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Summary. A mixed generalized Akaike information criterion xGAIC is introduced and validated.
It is derived from a quasi-log-likelihood that focuses on the random effect and the variability
between the areas, and from a generalized degree-of-freedom measure, as a model complexity
penalty, which is calculated by the bootstrap. To study the performance of xGAIC, we consider
three popular mixed models in small area inference:a Fay–Herriot model, a monotone model and
a penalized spline model. A simulation study shows the good performance of xGAIC. Besides,
we show its relevance in practice, with two real applications: the estimation of employed people
by economic activity and the prevalence of smokers in Galician counties. In the second case,
where it is unclear which explanatory variables should be included in the model, the problem
of selection between these explanatory variables is solved simultaneously with the problem of
the specification of the functional form between the linear, monotone or spline options.
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freedom; Monotone model; Small area estimation; Spline regression

1. Introduction

The question of model selection has received much attention in the literature in the past (starting
with the well-known paper by Akaike (1973)), and also in recent years due, among other reasons,
to the increasing complexity of modelling approaches. In particular, the question has received
considerable attention in the context of linear mixed models; for a comprehensive review of
various approaches we refer the reader to Muller et al. (2013). However, in small area estimation
(SAE), this is still a problem that has been only tentatively studied. One of the most popular
approaches to model selection is to use the Akaike information criterion AIC, which is the
objective of this paper.

In general terms, the value of AIC for a model M is defined as AIC.M/=−2 log{l.M/}+2D,
where l.M/ is the model likelihood and D is a penalty term, which was originally equal to the
number of parameters in the model, p (Akaike, 1973). The model with the lowest value of AIC
is then selected. It is also usual to use the degrees of freedom DF instead of p; DF coincides
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with p for simple models like the normal linear regression model and with the number of free
parameters or the parameters of the final model, in other cases. However, this is not always so
simple for more complex models such as the lasso or shrinkage estimation; see among others
Kato (2009) and Tibshirani and Taylor (2012). Much work has been done over the last few
years in deriving measures of the complexity of models in such cases, to be used, particularly,
as a penalty term in AIC. Several related concepts have been used: the concepts of divergence
and effective degrees of freedom, for example, by Rueda (2013) or Hansen and Sokol (2014).
Other researchers have used the concept of generalized degrees of freedom (GDF), which was
originally defined in Ye (1998) for normal models and also considered in different models by
Shen and Huang (2006), Gao and Fang (2011) or Zhang et al. (2012), among others.

In the particular case of models with random effects, the most interesting references are,
chronologically ordered, Hodges and Sargent (2001), Vaida and Blanchard (2005), Greven and
Kneib (2010), Yu and Yau (2012), Zhang et al. (2012), Muller et al. (2013), Overholser and Xu
(2014) and You et al. (2016). All of them use AIC-measures to address the problem of model
selection but consider different versions for the penalty terms and either conditional or marginal
log-likelihoods. Moreover, some of them, using similar solutions for the penalty and the same
log-likelihood, propose different estimation approaches. The most recent contribution to the
subject is the new definition of GDF that was proposed by You et al. (2016), who also derived
new conditional AIC, cAIC, and marginal AIC, mAIC, measures using the new GDF as the
penalty. They reported the ability of these criteria to select the data-generating models, with
simulations, in various settings.

In the context of SAE, Pfeffermann (2013), in a review about new important developments in
SAE, thought about the problem of model selection and followed the ideas of Vaida and Blan-
chard (2005), who explained in detail the advantage of cAIC over mAIC in many applications
of SAE. They argued that, in linear mixed model selection, the marginal likelihood should be
used when the interest is the population parameters and the conditional likelihood when the
interest is the clusters or domains. Rao and Molina (2015), following this idea, said that cAIC
is more relevant when the focus is on estimation of the realized random effects and the regres-
sion parameters. Han (2013) studied cAIC in the Fay–Herriot model and affirmed that cAIC
is suitable for measuring the prediction performance of a working model in SAE. Marhuenda
et al. (2014) studied the bias corrections to AIC for the Fay–Herriot model. Model selection in
SAE problems, when P-splines models are the candidate models, was considered by Jiang et al.
(2010), who proposed a fence method; but, as far as we know, there are no other references
dealing with this issue for a general model formulation such as we consider here, despite the fact
that there has been a larger number of SAE applications, in recent years, using estimators based
on non-linear models (Opsomer et al. (2008), Jiang et al. (2010), Salvati et al. (2010), Sperlich
and Lombardı́a (2010), Rueda and Lombardı́a (2012) or Torabi and Shokoohi (2015), among
others). In fact, analytical values for GDF are known only when the fitted model is linear (Han
(2013) and references therein).

In this work, we deal with the selection model issue in the more realistic setting where the
functional form of the predictors cannot, or should not, be assumed to be linear. Non-parametric
models based on P-splines and monotone assumptions will be the opponents to linear models
in the selection process. These models have been considered in some of the above references.

With that goal in mind, we propose a new AIC, which we refer to as xGAIC. The novelty
of the proposal is twofold: on the one hand, xGAIC is derived by using a quasi-log-likelihood
that focuses on the random effect and the variability between the areas, and, on the other hand,
the penalty is a GDF-measure, inspired by that of You et al. (2016) and Ye (1998). In addition,
as the focus in SAE is the domains, xGAIC is compared with an alternative derived by using
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a conditional likelihood, cGAIC. A bootstrap approach to estimate GDF is considered that
distinguishes the mixed, xGDF, or the conditional, cGDF, focus. Moreover, both proposals
will be compared with the conditional AIC proposed by Vaida and Blanchard (2005), vAIC,
which has been proposed by several researchers for model selection in SAE applications (see
Pfeffermann (2013)). We shall show, using simulation results and two real cases, the good
performance of xGAIC, compared with those of cGAIC and vAIC, for selecting the predictors
and its functional form in SAE problems.

We organize the remainder of the paper as follows. Section 2 introduces the linear, monotone
and P-spline mixed models. In Section 3, the new information criteria statistics, xGAIC and
cGAIC, are derived. Also in Section 3, an estimation approach, based on the bootstrap, to
calculate the penalties is described. The behaviour of the new methodology is illustrated in
Section 4, with simulation studies and in Section 5, with two real applications: one of socio-
economic interest and the other in the field of health. Section 6 discusses some issues related to
the application of the proposed methodology to real data and gives the main conclusions and a
brief discussion of future research. Finally, Appendix A includes methodological developments
of interest.

2. Model description

In this section, we consider some linear and non-linear models of interest to study two real
applications in the field of socio-economy and health. In the following subsections, we briefly
detail how they are used in SAE. We take D as the number of domains or small areas of
interest and p auxiliary variables .X1, : : : , Xp/. Let X be the matrix of auxiliary information
with dimension D ×p, and xd be a vector containing the aggregated (population) values of p

auxiliary variables for domain d.
The model is composed of two stages. In the first stage, a model called the sampling model is

used to represent the sampling error of direct estimators. Let μd be the characteristic of interest
in the dth area and yd be a direct estimator of μd . The sampling model indicates that the direct
estimator yd is unbiased and can be expressed as

yd =μd + ed , d =1, : : : , D,

where ed ∼ N.0, σ2
d/ are independent with σ2

d known. In practice, we take the design-based
variance of direct estimator yd . In the second stage, the domain characteristics μd ∼N.θd , σ2

u/,
where θd = f.x1d , : : : , xpd/ is a linear or non-linear function, depending on the model that is
considered. Hereinafter we use θd or f.x1d , : : : , xpd/ interchangeably, and the variance σ2

u is
unknown, with the random effect ud ∼N.0, σ2

u/. So, the final model can be expressed as a single
model in the form

yd =θd +ud + ed , d =1, : : : , D:

2.1. Fay–Herriot model
The Fay–Herriot model has been widely used in the literature of SAE (Fay and Herriot, 1979).
Under this model,

θd =f.x1d , : : : , xpd/=xdβ, d =1, : : : , D,

where β is the vector of the regression coefficients. So, the Fay–Herriot model is

yd =xdβ+ud + ed , d =1, : : : , D:
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In matrix notation,

Y =Xβ+u + e,

where u ∼N.0,Σu =σ2
uID/ is the small area random effect which is independent of the model

error e∼N.0,Σe/, and ID is the identity matrix with dimension D. Note that the variability of e
is known and different in each area: Σe =diag.σ2

1, : : : , σ2
D/. Then, the covariance matrix of the

response variable Y is given by var.Y/=Vy =Σu +Σe.
To fit the model, we use maximun likelihood (ML) estimation and the functions that are

available in package sae in the R language (Molina and Marhuenda, 2015). If the variance
components are known, the best linear unbiased estimator (BLUE) of β and the best linear
unbiased predictor (BLUP) of the random part are obtained as

β̃= .X′V−1
y X/−1X′V−1

y Y

and

ũ =ΣuV−1
y .Y −Xβ̃/;

then μ̃= Xβ̃ + ũ. But, in practice, the variance components σ2
u are unknown, so well-known

methods, such as ML or restricted maximum likelihood (REML) can be used to estimate them.
Details of the calculation can be seen in Appendix A. The ML update equation of σ2

u is

σ̂2
u = û′û

D− .1=σ̂2
u/tr.T̂u/

where T̂u = .Σ̂
−1
e +Σ̂

−1
u /−1. These equations can be solved numerically from an initial value σ2

u0
of σ̂2

u, which is replaced in β̃ to obtain β0. These values, σ2
u0 and β0, are replaced in ũ and σ̂2

u and
the process is iterated until convergence. The empirical BLUE β̂ and the empirical BLUP û are
obtained by replacing, in the above expressions, the variance components for their estimates.
So we have μ̂=Xβ̂+ û and θ̂=Xβ̂.

2.2. Monotone model
Under the monotone model,

θd =f.x1d , : : : , xpd/=
p1∑

j=1
βjxjd +

p∑
j=p1+1

hj.xjd/, d =1, : : : , D,

where hj.·/ are monotone functions. To obtain the ML estimators for the area parameters and
the estimator for the variance of the random effects we use the methodology that was proposed
in Rueda and Lombardı́a (2012), which is now briefly summarized.

In the simple case where σ2
u is known, the weight matrix W = V−1

y is also known, and θ̂d is
the projection of Y with weight W onto a cone, as follows:

θ̂d =
p1∑

j=1
β̂jxjd +

p∑
j=p1+1

ĥj.xjd/=PW .Y|K/:

K=L0 +S1 + : : :+Sp2 is a convex region in Rn defined by the restrictions that are imposed. L0 is
the linear subspace of dimension p1 spanned by columns in matrix .x1, : : : , xp1/ and, for j>p1
each Sj, is the order cone associated with xj, Sj = {u ∈ Rn=ud �ud′ ⇔ xjd � xjd′}. PW .Y|K/ is
obtained by using a cyclic pool adjacent algorithm in a style of a backfitting procedure built
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around the pool adjacent algorithm PAVA, where PAVA is a popular algorithm (Robertson
et al., 1988) for solving univariate monotone regressions.

From θ̂d , an empirical maximum likelihood predictor for the area means is easily derived by

μ̂d =
(

1− σ2
u

σ2
d +σ2

u

)
θ̂d + σ2

u

σ2
d +σ2

u

Yd , d =1, : : : , D:

In the case where σ2
u is unknown, we propose an iterative procedure to obtain θ̂=PW .Y|K/

and σ̂2
u. The procedure is based on the next equality proposed in Rueda et al. (2010):

Eθ[h.σ2
u/|DK.Y/= l]=D− l

where h.σ2
u/ = ‖Y − PW .Y|K/‖2

W and DK.Y/ measures the degrees of freedom of the model,
which is obtained from case B of Rueda (2013). The estimators are obtained by solving the
equation h.σ2

u/=D− l iteratively, where l is the dimension of subspace LK, such that PW .Y|K/=
PW .Y|LK/ and letting σ2

u =0, when no positive solution exists. The procedure includes a control
variable c0 to assure that l does not vary in the next iteration once l has attained the same value
in two successive iterations. The σ̂2

u from the Fay–Herriot model can be used as the initial values.

2.3. Penalized spline model
Under the penalized spline model, we take

θd =f.x1d , : : : , xpd/=
p1∑

j=1
βjxjd +

p∑
j=p1+1

fj.xjd/, d =1, : : : , D,

where p=p1 +p2 is the number of area auxiliary variables, and fj.·/ are any smooth functions
to be estimated by using penalized spline regression.

Using P-splines, we can write the model as the mixed effects model

Y =θ+u + e =Xβ+Zv +u + e,

where Xβ+Zv represents the spline function. According to the base that is used for P-splines,
X and Z have different forms.

(a) Truncated polynomial spline basis: X= .1, x, : : : , xp/ and Z= ..xi −kK/
p
+/, where p is the

degree of spline, .x/
p
+ denotes the function xpIx>0 and k1 <: : :<kK is a set of fixed knots.

(b) B-splines: X = .1, x, : : : , x.d−1//, where d is the order of the differences in the penalty
matrix, and Z=BRΣ−1=2, with B the matrix of the spline basis obtained from the covariate
X, whereas R and Σ are matrices that form part of the decomposition in singular values
of the penalty matrix.

Having described the base, the connection with a mixed model is immediate. To fit the model,
it is suitable to treat Zv as a random-effect term, with v ∼ N.0,Σv = σ2

vIc−2/, where c is the
number of columns in the original base B. Then, the covariance matrix of the variable Y is
given by var.Y/=Vy =ZΣvZ′ +Σu +Σe, adding an additional term if we compare it with the
Fay–Herriot model. Some examples of the use of P-splines in small areas can be seen in Opsomer
et al. (2008) and Ugarte et al. (2009), among others.

If the variance components are known, the BLUE of β is obtained as

β̃= .X′V−1
y X/−1X′V−1

y Y

and the BLUP of the random part is
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ṽ =ΣvZ′V−1
y .Y −Xβ̂/,

ũ =ΣuV−1
y .Y −Xβ̂/:

In practice, the variance components .σ2
v , σ2

u/ are unknown; then well-known methods, such
as ML or REML, can be used to estimate them, as in the Fay–Herriot model (see details of the
calculation in Appendix A). Then, the ML update estimates of σ2

v and σ2
u are respectively

σ̂2
v = v̂′v̂

D− .1=σ̂2
v/tr.T̂v/

and

σ̂2
u = û′û

D− .1=σ̂2
u/tr.T̂u/

,

where T̂v and T̂u are the empirical versions of Tv and Tu respectively; see the expression in
Section 2.1. Replacing the true variances with their estimates .σ̂2

v, σ̂2
u/, we obtain the empirical

BLUE β̂ and the empirical BLUPs v̂ and û. The fitted model can be obtained in R with various
packages: mgcv, SemiPar or nlme, among others (Wood, 2006; Pinheiro et al., 2016; R Core
Team, 2015), but not directly, because, in our case, Σe is not constant between areas and is
assumed to be known. To solve these problems, we propose to use the following algorithm.

Step 1: estimate X and Z by using the function gamm of package mgcv in R.
Step 2: estimate the initial values of σ̂2

u,0 and σ̂2
v,0 from the output of the function gamm of R

and calculate V̂0 =ZΣ̂v,0Z′ + Σ̂u,0 +Σe.
Step 3: for step k, calculate

β̂k = .X′V̂−1
y,k−1X/−1X′V̂−1

k−1Y,

v̂k = Σ̂vV̂
−1
y,k−1.Y −Xβ̂/,

ûk = Σ̂u,k−1V̂
−1
y,k−1.Y −Xβ̂/,

σ̂2
v,k = v̂′

k v̂k

D− .1=σ̂2
v,k−1/tr.T̂v,k−1/

,

σ̂2
u,k = û′

kûk

D− .1=σ̂2
u,k−1/tr.T̂u,k−1/

,

T̂v,k = .Z′Σ−1
e Z+ Σ̂

−1
v,k/−1,

T̂u,k = .Σ−1
e + Σ̂

−1
u,k/−1:

Step 4: stop when max{|σ̂2
u,k − σ̂2

u,k−1|, |σ̂2
v,k − σ̂2

v,k−1|, ‖β̂k − β̂k−1‖}� ".

Finally, we have μ̂=Xβ̂+Zv̂ + û and θ̂=Xβ̂+Zv̂.

3. Akaike information criterion

As we discussed in Section 1, various AIC-statistics have been defined in the literature which
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are derived from two versions of the likelihood, conditional or marginal, and different versions
of the penalty term. Although there is no clear consensus on whether to use one or another in
general problems, conditional likelihood is the most popular choice in SAE.

In this section, we introduce a new statistic, xGAIC, which does not follow a marginal or a
conditional approach. In contrast, it is derived by using quasi-log-likelihood and a naturally
linked GDF-measure.

xGAIC is partially inspired in the proposal by You et al. (2016), as we also define the GDF-
measure xGDF as the marginal expected estimated value of Yd with respect to the corresponding
underlying true means. However, the solution for the estimation of xGDF, which is intractable
analytically for non-linear models, such as those considered in this paper; and, more importantly,
the use of a quasi-log-likelihood, which is a measure combining marginal focus and conditional
focus, are novel contributions of this paper. In addition, we also introduce in this section, for
comparison, a conditional version: cGAIC. The mixed and conditional likelihood are presented
in Section 3.1, whereas, in Section 3.2, we discuss the proposed approach to estimate xGDF
and the conditional GDF. A pure marginal approach is not considered in this paper, as it is
more suitable for model selection without random effects and the focus here is a mixed models
selection for SAE applications. Finally, in Section 3.3, the expressions for xGAIC and cGAIC
are included, along with that of vAIC, exhibiting the differences and similarities between them.

3.1. The calculation of log-likelihood
Let the general model be

Y =θ+u + e,

where the marginal likelihood approach assumes that Y∼N.θ, Vy/ and Vy =var.Y/. Following
the calculations of Section 2, Vy =Σu +Σe for the Fay–Herriot model and the monotone model,
and for the P-spline model Vy =ZΣvZ′ +Σu +Σe.

In contrast, the conditional likelihood approach assumes that Y|u ∼ N.μ, Vy|u/ with μ =
E.Y|u/ =θ + u and Vy|u = var.Y|u/. In the previous examples, Vy|u =Σe for the Fay–Herriot
model and the monotone model, and Vy|u =ZΣvZ′ +Σe for the P-spline model.

Then, the marginal log-likelihood is calculated as

log{lm.M/}=− 1
2 D log.2π/− 1

2 log |Vy|− 1
2 .Y −θ/′V−1

y .Y −θ/

and the conditional log-likelihood is calculated as

log{lc.M/}=− 1
2 D log.2π/− 1

2 log |Vy|u|− 1
2 .Y −μ/′V−1

y|u.Y −μ/:

As an alternative, we propose a quasi-log-likelihood, which considers the focus on the random
effect and the total variability, combining the conditional and marginal approach, as follows:

log{lx.M/}=− 1
2 D log.2π/− 1

2 log |Vy|− 1
2 .Y −μ/′V−1

y .Y −μ/:

3.2. The calculation of generalized degrees of freedom
Ye (1998) proposed a GDF-concept that motivated the proposal in You et al. (2016), which in
turn motivated our proposal. Our first proposal is an extension of the GDF of You et al. (2016)
from the unit level model to the area level model, and the second considers only the conditional
distribution of Y .

We denote by EY .·/ and covY .·/ the expectation and covariance with respect to the marginal
distribution of Y respectively:
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xGDF=
D∑

d=1

@EY .μ̂d/

@θd

=
D∑

d=1

@

@θd

[
.2π/−D=2|Vy|−1=2

∫
μ̂d.y/exp

{
− 1

2
.y −θ/′V−1

y .y −θ/

}
dy
]

=
D∑

d=1
.2π/−D=2|Vy|−1=2

∫ {
− 1

2

@.y −θ/′V−1
y .y −θ/

@θd

}
μ̂d.y/exp

{
− 1

2
.y −θ/′V−1

y .y −θ/

}
dy

=
D∑

d=1
.2π/−D=2|Vy|−1=2

∫
D∑

i=1
V di

y .yi −θi/μ̂d.y/exp
{

− 1
2

.y −θ/′V−1
y .y −θ/

}
dy

=
D∑

d=1

D∑
i=1

V di
y

∫
.yi −θi/μ̂d.y/Φ.y/dy

=
D∑

d=1

D∑
i=1

V di
y EY{μ̂d.yi −θi/}

=
D∑

d=1

D∑
i=1

V di
y covY .μ̂d , yi/,

where Φ.·/ denotes the probability distribution function of y, μ̂d is the estimator of μd (see
Section 2) and V di

y is the di-element of the matrix V−1
y . We must implicity make a choice between

a marginal and a conditional expectation and we choose the marginal expectation. This GDF
is a measure of the sensitivity of the expected estimate of the response with respect to the
corresponding underlying means.

For comparison, we also propose a conditional GDF based on the conditional distribution
of Y . We denote by EY |u.·/ and covY |u.·/ the expectation and covariance with respect to the con-
ditional approach respectively. Again, we obtain an empirical measure of the model complexity,
but in this case the underlying true mean is μ=E.Y|u/=θ+u:

cGDF=
D∑

d=1

@EY |u.μ̂d/

@μd

=
D∑

d=1

@

@μd

[
.2π/−D=2|Vy|u|−1=2

∫
μ̂d.y/exp

{
− 1

2
.y −μ/′V−1

y|u.y −μ/

}
dy
]

=
D∑

d=1
.2π/−D=2|Vy|u|−1=2

∫ {
− 1

2

@.y −μ/′V−1
y|u.y −μ/

@μd

}

× μ̂d.y/exp
{

− 1
2

.y −μ/′V−1
y|u.y −μ/

}
dy

=
D∑

d=1
.2π/−D=2|Vy|u|−1=2

∫
D∑

i=1
V di

y|u.yi −μi/μ̂d.y/exp
{

− 1
2

.y −μ/′V−1
y|u.y −μ/

}
dy

=
D∑

d=1

D∑
i=1

V di
y|u
∫

.yi −μi/μ̂d.y/Φ.y|u/dy

=
D∑

d=1

D∑
i=1

V di
y|uEY |u[μ̂d.yi −μi/]

=
D∑

d=1

D∑
i=1

V di
y|ucovY |u.μ̂d , yi/:
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where V di
.y|u/ is the di-element of the matrix V−1

y|u. This expression depends on u, which is substi-
tuted by û.

The analytic values of xGDF and cGDF are difficult to obtain for most non-linear mixed
models. We propose the parametric bootstrap as an alternative, following the idea of You et al.
(2016). We give a solution to approximate xGDF and cGDF, proposing the following plug-in
type of estimators that use bootstrap resampling to facilitate their calculation. For this, we use
the full model REML estimates to resample Y , according to the consistency property of REML
estimates (Jiang, 1996).

3.2.1. Parametric bootstrap
3.2.1.1. Mixed approach.

Step 1: calculate the estimators of the model parameters (as in Section 2), which are used
to generate the model in the next step—θ̂d = f̂ .x1d , : : : , xqd/, the fitted model following the
Fay–Herriot, monotone or P-spline model, σ̂2

u and σ̂2
e .

Step 2: repeat the following steps B times .b=1, : : : , B/.

(a) Generate the random part of the model uÅ
d and eÅ

d as independents N.0, σ̂2
u/ and N.0, σ2

d/

distributions respectively, d = 1, : : : , D. Now, construct the bootstrap model y
Å.b/
d =

μ
Å.b/
d + e

Å.b/
d , with μ

Å.b/
d = θ̂d +u

Å.b/
d , and the variance–covariance matrix V̂y.

(b) From each bootstrap sample {y
Å.b/
d , xd}, calculate μ̂

Å.b/
d = μ̂d.y

Å.b/
d , xd/= θ̂

Å.b/
d + û

Å.b/
d ,

with θ̂
Å.b/

d = f̂
Å.b/

.x1d , : : : , xpd/ and û
Å.b/
d calculated as f̂ .x1d , : : : , xpd/ and ûd from the

bth bootstrap sample respectively.

Step 3: approximate xGDF by Monte Carlo sampling,

̂xGDF=
D∑

d=1

D∑
i=1

1
B−1

B∑
b=1

VÅ.b/,di
y .μ̂

Å.b/
d − ¯̂μÅ

d /.y
Å.b/
i − ȳÅ

i /

where ¯̂μÅ
i = .1=B/ΣB

b=1μ̂
Å.b/
i and ȳÅ

i = .1=B/ΣB
b=1y

Å.b/
i , and VÅ.b/,di

y is the di-element of the
inverse of the VÅ.b/

y -matrix.

3.2.1.2. Conditional approach.

Step 1: we calculate the estimators of the model parameters as in Section 2—θ̂d = f̂ .x1d , : : : ,
xqd/ and ûd .
Step 2: repeat the following steps B times .b=1, : : : , B/.

(a) Generate the random part of the model eÅ
d as N.0, σ2

d/, d =1, : : : , D. Construct the boot-
strap model y

Å.b/
d = μ̂d + e

Å.b/
d , with μ̂d = θ̂d + ûd and the variance–covariance matrix

V̂y|u.
(b) From each bootstrap sample {y

Å.b/
d , xd}, calculate μ̂

Å.b/
d = μ̂d.y

Å.b/
d , xd/= θ̂

Å.b/
d + û

Å.b/
d ,

calculated as θ̂d and ûd from the bth bootstrap sample respectively.

Step 3: approximate cGDF by Monte Carlo sampling,

̂cGDF=
D∑

d=1

D∑
i=1

1
B−1

B∑
b=1

V
Å.b/,di
y|u .μ̂

Å.b/
d − ¯̂μÅ

d /.y
Å.b/
i − ȳÅ

i /

where V
Å.b/,di
y|u is the di-element of the inverse of the VÅ.b/

y|u -matrix.

In this way, we finally compute ̂xGDF or the ̂cGDF as required.

3.3. Generalized Akaike information criterion statistics
We define the generalized Akaike information criterion GAIC for a small area model M,
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yd =f.x1d , : : : , xpd/+ud + ed , d =1, : : : , D,

as follows:

GAIC.M/=−2 log{l.M/}+GDF:

Here l.M/ may be lx.M/ or lc.M/ (or a marginal version) and GDF is estimated by x ̂GDF or
c ̂GDF (or other candidates). Here, we propose to combine lx.M/ and x ̂GDF by considering the
random effect and the variability between areas to define

xGAIC=−2 log{lx.M̂/}+x ̂GDF:

And, for comparison, we also define

cGAIC=−2 log{lc.M̂/}+ c ̂GDF:

In fact, we could obtain several definitions of GAIC by taking other combinations. You
et al. (2016) suggested using the same GDF-estimator combined with lc.M/ and also with a
marginal likelihood, whereas Pfeffermann (2013), in a review about SAE, proposed the use of
the conditional AIC of Vaida and Blanchard (2015) for linear mixed models, which is defined
as

vAIC=−2 log{lc.M̂/}+PÅ

where

PÅ = n.n−k −1/.ρ+1/+n.k +1/

.n−k/.n−k −2/
,

where k is the number of covariates and ρ= tr.H/, and H defines the matrix mapping the observed
vector y onto the fitted vector ŷ=Xβ̂ + û such that ŷ=Hy. As far as we know, the matrix H has
not been derived in the literature for monotone models, so we can only calculate the expression
of vAIC for the Fay–Herriot and P-spline models. The difference between vAIC and cGAIC
is in the penalty term. In the next section, we compare the values for cGDF and PÅ that were
obtained in the simulations and the performance of the three criteria when the Fay–Herriot and
P-spline models are considered, showing that cGAIC provides similar results to those of vAIC.

The way that xGAIC is calculated, it can be used for selection from a range of models, going
from a simple linear model to the most complex non-parametric model. In SAE applications,
particularly in those which are included in this paper, we propose to use the mixed estimators
for the small areas resulting from the model with the lowest value of xGAIC. cGAIC-selection
is also recorded for comparison. Surprisingly, quite different models can be selected by these
two criteria, as can be seen in the following sections where real and simulated data sets are
analysed.

4. Simulation study

4.1. Simulation experiment 1
The goal of this first simulation experiment is to analyse the behaviour of the proposed method-
ology for the selection between linear, monotone and spline models. To generate the data, we
considered the Labour Force Survey (LFS) example that is analysed in Section 5.1 as a reference,
and normality assumptions. Then, the simulated model is yd = f.xd/ + ud + ed (d = 1, : : : , D),
where D = 77, xd ∼ U.0, 1/, ud ∼ N.0, σ2

u/ and ed ∼ N.0, σ2
d/. Various scenarios are designed,

based on different definitions for f.·/, and various σu- and σd-values, d =1, : : : , D, .
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Regarding the definition of f.·/, three models are considered: a linear model LM,

f.xd/=β0 +β1xd ,

a monotone but non-linear model MM,

f.xd/=β0 + log.xd/,

and a non-monotone model NM,

f.xd/=β0 + sin.πxd/:

For the variance parameters, we consider σ2
d = σ2

d,LFS (d = 1, : : : , 77) values in the interval
[0,0.09] and σ2

u =σ2
u,LFS =0:21, where σ2

d,LFS and σ2
u,LFS are the values of σ2

d and σ̂2
u in example

1 of the real applications, and the four combinations resulting from also using σ2
d,LFS ×10 and

σ2
u,LFS=10:

(a) Var1, σ2
u,LFS and σ2

d,LFS;
(b) Var2, σ2

u,LFS=10 and σ2
d,LFS;

(c) Var3, σ2
u,LFS and σ2

d,LFS ×10;
(d) Var4, σ2

u,LFS=10 and σ2
d,LFS ×10.

In short, we consider a total of 12 scenarios, corresponding to the three model specifications
and the four variance parameter configurations. For each scenario, we generate and analyse
data as follows.

(a) Repeat I =500 times (i=1, : : : , 500).
(i) Generate samples .yd , xd/, d =1, : : : , D under LM, MM and NM.
(ii) Fit the Fay–Herriot model FH, the monotone model and the P-spline model and

calculate, for each, σ̂2
u, c ̂GDF, x ̂GDF, cGAIC, xGAIC and PÅ:

(iii) Record the model selected, by using the minimum cGAIC or xGAIC, between the
Fay–Herriot, monotone or P-spline model and also record whether the cGAIC- or
xGAIC-selected model agrees with the generated model.

(iv) Record σ̂2
u corresponding to the model selected, by using the minimum cGAIC or

xGAIC.
(b) Derive global statistics:

(i) average values of σ̂2
u , ̂cGDF and ̂xGDF for the Fay–Herriot, monotone and P-spline

models;
(ii) average values of PÅ for the Fay–Herriot and P-spline models;
(iii) correct classification rates from using xGAIC or cGAIC;
(iv) relative root-mean-squared errors RRMSE for σ̂2

u, corresponding to the model that is
selected by cGAIC or xGAIC,

RRMSE.σ̂2
u/=

√{
.1=I/

I∑
i=1

.σ̂2.i/
u −σ2

u/2
}

σ2
u

:

Tables 1–3 include the main statistics from the simulation results for the 12 scenarios: mean
values of penalties, percentages of correct classification and RRMSEs of σ̂2

u for the selected
model respectively.

Firstly, in Table 1, mean values of ̂xGDF, ̂cGDF and PÅ are shown. Note that PÅ-values are
not given for the monotone models because, as far as we know, they have not been derived in
this context. Numbers in Table 1 show that the values of ̂xGDF, ̂cGDF and PÅ are quite similar:
a little higher for PÅ than for ̂xGDF or ̂cGDF but in the same range. In fact, vAIC and cGAIC
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Table 1. Average values of ̂xGDF, ̂cGDF and P * under various simulated scenarios

Scenario Results for ̂xGDF Results for ̂cGDF Results for PÅ

FH Monotone P-spline FH Monotone P-spline FH P-spline

Var1
LM 74.83 75.05 74.86 74.89 74.99 74.86 76.05 76.05
MM 76.29 74.98 75.02 76.30 75.11 75.10 77.47 76.26
NM 75.44 75.45 74.98 75.47 75.41 74.96 76.60 76.17

Var2
LM 64.92 65.69 64.69 64.49 65.33 64.26 66.23 66.22
MM 76.12 67.15 69.42 76.12 67.23 69.95 77.31 70.10
NM 74.02 73.62 64.28 74.01 73.60 64.25 74.60 66.13

Var3
LM 65.09 65.80 64.79 64.70 65.25 64.37 66.20 66.18
MM 72.47 65.74 65.75 72.54 65.47 65.70 73.69 67.40
NM 67.61 68.27 65.22 67.28 67.60 64.64 69.04 66.37

Var4
LM 40.17 42.79 39.39 38.75 40.36 38.16 41.10 41.10
MM 71.57 45.59 49.24 71.62 43.88 50.03 72.74 52.70
NM 60.14 58.36 38.26 59.60 57.22 37.70 60.23 40.70

perform in much the same way when they are used as model selection criteria, as the difference
between these statistics is only due to the penalty term. However, both statistics perform in a
different way from xGDF, as the former differs from the latter, mostly, in the likelihood term.
This fact is shown with the simulated data sets in Section 4.2. Therefore, the values of vAIC
and cGAIC are also in the same range as the difference between them is that we see due to the
penalty term which results, as we show below, in quite similar selections using both criteria.
However, the behaviour of xGAIC is quite different, as we shall show below.

From Table 2, it can be seen that xGAIC almost always selects a valid model, whereas cGAIC
does not (note that model LM is a particular case of MM or NM). When an LM model, in
particular, is generated, xGAIC selects LM less frequently (rates ranging from 22% to 37%) than
cGAIC (rates ranging from 25% to 47%), but the model selected provides σ2

u-estimators with
a similar efficiency to those provided by cGAIC (see Table 3). Moreover, in this case, the MM
and the P-spline model, which are also correct models, have similar degrees of complexity to the
linear model, as shown by the GDF-values in Table 1, resulting in quite similar area estimators.

When model MM is generated, the correct classification rates from xGAIC are equal to 100%
in the four cases considered, whereas cGAIC has rates ranging from 30% to 57%. Moreover,
cGAIC incorrectly selected a Fay–Herriot model 7−37% of the time. The consequences of
choosing a wrong model, the Fay–Herriot model, are more serious in this case. First, the σ2

u-
estimators are much worse and, also, the complexity of the model selected compared with the
correct model increases in this case, as shown by the relatively high values of GDF when a
Fay–Herriot model is fitted. These comments come from the numbers in Table 1 and Table 3,
and are more important in the case σ2

d,LFS ×10 and σ2
u,LFS=10. When model NM is generated,

again, xGAIC performs much better than cGAIC; the model selected, by the latter measure, is
markedly worse in terms of complexity and efficiency of σ̂2

u.
Furthermore, some researchers have dealt with the interesting issue of ‘double dipping’ (e.g.
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Table 2. Percentage of times that the Fay–Herriot, monotone or P -spline
models are selected by xGAIC and cGAIC under various simulated scenarios

Scenario Results for xGAIC Results for cGAIC

FH Monotone P-spline FH Monotone P-spline

Var1
LM 36.98 61.85 1.17 47.04 44.07 8.89
MM 0 100 0 36.8 30.2 33
NM 1.35 14.35 84.3 34.98 33.63 31.39

Var2
LM 24.37 73.11 2.52 34.18 60.5 5.32
MM 0 100 0 13.6 46.4 40
NM 0 0 100 15.72 24.93 59.35

Var3
LM 36.57 56.12 7.31 38.10 47.96 13.95
MM 0 100 0 35.27 39.83 24.90
NM 3.60 2.80 93.60 10.80 54.80 34.40

Var4
LM 22.35 63.22 12.36 24.48 66.12 9.48
MM 0 100 0 7.00 56.60 36.40
NM 0 0 100 8.80 59.03 32.18

Jiang et al. (2015), page 1137) when some quantity is evaluated not necessarily under the same
model as the true model. We consider that the effect of this issue dealing with the GDF-estimators
included in the GAIC-measures, is minimal; first, as numbers in Table 1 show the dependence of
GDF-estimators on the underlying model and, second, and mainly, because the good empirical
performance of xGAIC implies that the estimator works, at least for using xGAIC as the selection
model measure.

4.2. Simulation experiment 2
The goal of simulation 2 is to study the performance of the method proposed as the variable
selection criterion. We shall use the Fay–Herriot model with the objective of comparing our
proposal with vAIC. We simulate three scenarios with one, two and three variables. In this
simulation, we have considered the auxiliary information and variance parameters from the
second real application in the next section (the health survey) to generate the data: scenario S1,

yd =β0 +β1X1 +ud + ed ;

scenario S2,

yd =β0 +β1X1 +β2X2 +ud + ed ;

scenario S3,

yd =β0 +β1X1 +β2X2 +β3X3 +ud + ed:

Here d =1, : : : , D, D=41, ud ∼N.0, σ2
u/ and ed ∼N.0, σ2

d/, with σ2
u =0:4 and σ2

d in the interval
[0.02,0.64] and X1 =65age, X2 =unemp and X3 = low from the Women’s Health Survey. Then,
we fit the models considering one (X1), two (X1,X2) and three variables (X1, X2, X3) and calculate
the percentage of times where the real model is chosen with xGAIC, cGAIC and vAIC.
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Table 3. RRMSE of σ̂2
u by using the model selected by

xGAIC and cGAIC under various simulated scenarios

Scenario Results for xGAIC Results for cGAIC

Var1
LM 0.09 0.08
MM 0.12 0.59
NM 0.11 0.20

Var2
LM 0.12 0.11
MM 0.18 1.60
NM 0.10 0.91

Var3
LM 0.10 0.10
MM 0.13 0.57
NM 0.11 0.20

Var4
LM 0.19 0.16
MM 0.36 1.27
NM 0.15 0.97

We present the results in Table 4. It can be seen that xGAIC has much better classification
rates than cGAIC and vAIC. In the case of S1, when the real model has only one variable, the
correct classification rate for xGAIC is 55%, whereas cGAIC and vAIC have rates of 35.6% and
43.2% respectively. When scenario S3 is generated, the correct classification rate for xGAIC is
100%, whereas cGAIC and vAIC have rates of 73.6% and 55% respectively. Moreover, when the
real model has three variables, cGAIC selects 36.4% of the times a model with fewer variables
than it needs, and vAIC 44% of the times. In this case, the consequences of choosing a wrong
model are more important.

5. Real applications

We illustrate the behaviour of the new methodology with two real applications: one of socio-
economic interest and the other in the field of health. The objective in the first application is the
estimation of the total number of employed people by economic activity in Galicia (a region
in the north-west of Spain). Knowing the number of employed people in each of the economic
activities is important for the government authorities to make decisions about economic sectors
in decline or to encourage potentially emerging sectors. In the second application, the objective
is to estimate the prevalence of smokers in the counties of Galicia. Tobacco consumption is still a
major public health problem in Spain, where one in seven deaths in the population aged 35 years
and over is attributable to it. The sociodemographic characteristics of the Galician population
have significant territorial differences, which suggests that the prevalence of smokers is also
different from one area to another. Knowing these differences is useful for designing specific
prevention and intervention programmes to control smoking, as well as serving to evaluate its
result, or to prioritize the allocation of resources.

In both cases, the direct estimators are not reliable estimators for domains with small sample
sizes. In addition, the auxiliary information is available, so we propose considering model-based
estimators that borrow strength across domains through regression models on the auxiliaries.
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Table 4. Correct classification rates from using xGAIC,
cGAIC and vGAIC under various simulated scenarios

Scenario Rates (%) for Rates (%) for Rates (%) for
1 variable 2 variables 3 variables

S1
xGAIC 55.0 25.2 19.8
cGAIC 35.6 34.2 30.2
vAIC 43.2 22.6 34.2

S2
xGAIC 0 70.01 29.99
cGAIC 14.2 46.0 39.8
vAIC 39.8 34.8 25.7

S3
xGAIC 0 0 100
cGAIC 11.6 14.8 73.6
vAIC 11.2 33.8 55.0

We consider, as candidate models, those defined in Section 2, which include the Fay–Herriot and
additive models with linear and monotone or P-spline components and a random effect. In the
first case, only one auxiliary is considered, so only three models are compared. In the second case,
where several auxiliary variables are available, up to 15 candidate models are compared and the
problem of selection between the more informative auxiliary variables is solved simultaneously
with the problem of the specification of their functional form.

Different models are selected after applying xGAIC- or cGAIC-criteria in both applications
and some evidence suggests that a better choice is provided, in both cases, by xGAIC. In
particular, whereas the xGAIC-model selection agrees with the smallest σ̂2

u derived from fitting
the different candidate models, in both cases, cGAIC does not. σ2

u is an important parameter
in SAE applications, because it is a measure of model accuracy, as it quantifies the variability
that is not explained by the model, and it is also the main factor in deriving the small area
model-based estimators.

5.1. Application to Labour Force Survey
We deal with data from the LFS of Galicia in the fourth quarter of 2013. The domains in this
case are economic activity and the response variable is the total number of employed people in
each domain d, Yd , which is the number of people currently employed in the activity. Denote by
Pd the population in economic activity d. Our goal is to estimate

Yd = ∑
j∈Pd

yj,

where yj =1 if the jth person in the domain d is employed, and yj =0 otherwise.
The LFS does not produce official estimates at the domain level, but the analogous direct

estimates of the total Yd , the mean Ȳ d =Yd=Nd and the size Nd are

Ŷ
dir
d = ∑

j∈Sd

wjyj,

ˆ̄Y
dir
d = Ŷ

dir
d =N̂

dir
d ,
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Fig. 1. Scatter plot between the target variable and the auxiliary variable

N̂
dir
d = ∑

j∈Sd

wj,

where Sd is the sample domain and wjs are the official calibrated sampling weights.
The LFS is designed to obtain precise estimates in the activity sector (‘Nomenclature statistique

des activités économiques dans la Communauté européenne’, one digit). The problem of the LFS
is that, when the domains are below the planned level, we find very small sample sizes of
domains and therefore very high sampling errors. For the fourth quarter of 2013, the minimum
sample size in the domains is 1, the first quartile is 12 and the median is 31; therefore, for
some domains with the direct estimator, it is not possible to obtain a reliable estimate of our
objective.

We consider 77 domains after discarding seven domains with a very low number of employed
people. In our data set, we have four variables.

(a) cnae: this variable indicates economic activity, e.g. agriculture, forestry and the food
industry.

(b) Y is the direct estimator of the total number of employed people in each economic activity.
(c) SS is the number of people registered in the social security system in each economic

activity.
(d) σ2

d,LFS is the variance of the direct estimator of Y .

The models are formulated by using the log-transform of the response and auxiliary, to fit
the normality error assumption better. In Fig. 1, we present the scatter plot of the two variables,
log.SS/ against log.Yd/ = log.employed/, by economic activity. The relationship between the
auxiliary variable and the response variable is apparently monotone, and almost linear.

We consider three additive mixed regression models, corresponding to those defined in Sec-
tion 2 for only one auxiliary. Table 5 shows the main statistics that are related to the calcula-
tion of GAICs. From numbers in Table 5, we see that xGAIC selected a Fay–Herriot model
whereas cGAIC selected a monotone model, being σ̂2

u higher in the latter. In this case, where the
assumption of linearity is fair, the more simple Fay–Herriot model seems a better choice,
since the differences between the models are so small, in view of the similarity between the
̂GDF-values; all three values were very close to D=77.
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Table 5. ĉGDF and cGAIC versus x̂GDF and xGAIC for the
Fay–Herriot, monotone and P -spline models and the corres-
ponding values of σ̂2

u

Model ̂cGDF cGAIC ̂xGDF xGAIC σ̂2
u

FH 74.8 −296:2 74.5 99.8 0.21
Monotone 76.0 −297:5 75.8 109.0 0.24
P-spline 73.9 −296:1 74.7 100.1 0.21

5.2. Application to health data
In this application, we deal with data from the surveys from the behavioural risk factors infor-
mation system in Galicia in 2010–2011. The sample design of this survey is stratified random
sampling with equal allocation by sex and age group. Our domains of interest are 41 areas
obtained from the 53 counties of Galicia. Our goal is to estimate the prevalence of smokers
by sex among the population aged 16 years and over, in the 41 areas of Galicia in the period
2010–2011.

This survey is designed to obtain precise estimates at province level. The problem is to obtain
reliable estimates for domains below the planned level because of small sample sizes. For 2010–
2011, the minimum sample size in the domains for men is 44, the first quartile is 69 and the
median 93.

We use the logarithm of smokers as the response, log.Ŷ
dir

/, where Ŷ
dir

is the direct estimator
obtained from the survey. In our data set we also have the following auxiliary variables:

(a) age, the percentage of the population under 15 years, 15age, from 15 to 24, years, 15–24,
from 25 to 44 years, 25–44, from 45 to 64 years, 45–64, and 65 years and over, 65age;

(b) degree of urbanization, the percentage of the population that live in a densely populated
area, zdp, an intermediate area, zip, and a thinly populated area, zpp;

(c) activity, the proportion of employed, emp, unemployed, unemp, and inactive people, inac;
(d) education level, the proportion of people with low education, low, secondary education,

sec, and higher education, higher.educ.

As several studies have revealed, some sociodemographic characteristics of the population,
such as sex, age, level of education, employment status or degree of urbanization, are associated
with tobacco consumption (Li et al., 2009; Srebotnjak et al., 2010), and these characteristics
vary from one region to another. In Galicia, 28% of men and 18% of women aged 16 years and
over currently smoke, according to data from the survey of behavioural risk factors in 2011. In
this study, we separate men and women, as in the study of Srebotnjak et al. (2010), because the
behaviour and pattern of tobacco consumption are very different between the sexes. In Fig. 2,
we present the prevalence of smokers and some summaries of the main variables used in this
study by sex. It can be seen that the sociodemographic characteristics for men and women are
quite different.

Table 6 shows the correlations between the auxiliary variables and the response variable. From
Table 6 it can be seen that low, higher.educ, emp and sec are the most correlated variables for
men and zdp, zpp, 15age and 65age for women.

In addition non-significant auxiliary variables were discarded after fitting a Fay–Herriot
model, with the exception of emp and unemp selected by the experts. Fig. 3 shows the scatter
plots from the four auxiliary variables selected against the response variable (smokers by area)
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Fig. 2. Boxplots of the main variables and the prevalence of smokers p for (a) men and (b) women

Table 6. Correlations between the predictors and the
response

Predictor Results for men Results for women

zdp X1 0.27 0.56
zip X2 −0:14 −0:19
zpp X3 −0:21 −0:54
15age X4 0.22 0.54
15–24 X5 0.10 0.33
25–44 X6 0.26 0.50
45–64 X7 0.02 0.19
65age X8 −0:27 −0:52
emp X9 0.29 0.17
unemp X10 −0:08 0.43
inactive X11 −0:22 −0:32
low X12 −0:38 −0:40
sec X13 0.28 0.31
higher.educ X14 0.29 0.36

for men. The assumption of a monotone relationship between auxiliary and response is sensible
in all four cases.

Up to 15 additive mixed models, defined from two, three or four predictors, have been fitted
to the data set. The models are formulated as those in Section 2 and differ from each other in
which predictors are modelled as linear, monotone or P-spline. We have included the relevant



Mixed Generalized Akaike Information Criterion 1247

Table 7. Models fitted to the men’s data: ̂GDF and GAIC conditional and mixed values, and σ̂2
u

Model Linear Monotone P-spline ̂cGDF cGAIC ̂xGDF xGAIC σ̂2
u

label predictors predictors predictors

M1 X12, X8 37.2 −18:5 37.1 79.5 0.40
M2 X12 X8 40.9 −14:7 41.1 78.8 0.35
M3 X12 X8 36.5 −18:6 36.4 75.9 0.37
M4 X12, X8, X13 37.1 −18:4 37.4 77.9 0.38
M5 X12, X13 X8 41.0 −14:4 40.8 78.5 0.35
M6 X12, X13 X8 36.7 −18:4 35.4 71.7 0.34
M7 X12 X8, X13 40.9 −14:9 40.8 67.2 0.26
M8 X12 X8, X13 36.2 −17:8 34.2 70.6 0.30
M9 X12, X8, X13, X9 37.4 −18:1 36.7 76.1 0.38
M10 X12, X13, X9 X8 41.0 −12:9 40.4 69.9 0.28
M11 X12, X13, X9 X8 36.9 −17:5 34.6 68.9 0.31
M12 X12, X13 X8, X9 41.0 −14:1 40.8 78.4 0.34
M13 X12, X13 X8, X9 36.6 −20:0 35.6 68.5 0.31
M14 X12 X8, X9, X13 40.8 −13:0 40.4 64.9 0.24
M15 X12 X8, X9, X13 36.2 −17:3 34.0 68.5 0.26

Table 8. Models fitted to the women’s data: ̂GDF and GAIC conditional and mixed values, and σ̂2
u

Model Linear Monotone P-spline ̂cGDF cGAIC ̂xGDF xGAIC σ̂2
u

label predictors predictors predictors

W1 X12, X8 34.7 10.5 35.2 89.5 0.48
W2 X12 X8 40.2 15.4 40.2 83.5 0.35
W3 X12 X8 32.9 10.5 31.5 74.7 0.31
W4 X12, X8, X13 34.4 10.6 34.3 86.1 0.46
W5 X12, X13 X8 40.0 15.7 39.8 82.5 0.35
W6 X12, X13 X8 32.3 10.6 30.8 75.7 0.29
W7 X12 X8, X13 39.8 15.6 40.0 78.7 0.30
W8 X12 X8, X13 31.8 10.0 29.8 70.5 0.29
W9 X12, X8, X13, X10 33.7 9.4 34.7 83.0 0.40
W10 X12, X13, X9 X8 39.9 15.8 40.3 79.5 0.30
W11 X12, X13, X9 X8 32.1 10.1 30.9 69.2 0.27
W12 X12, X13 X8, X10 39.4 15.9 39.1 70.5 0.23
W13 X12, X13 X8, X10 31.1 10.2 31.1 66.5 0.22
W14 X12 X8, X10, X13 39.4 15.4 38.8 54.5 0.12
W15 X12 X8, X10, X13 30.4 9.5 27.9 66.2 0.22

statistics for the fitted models in Tables 7 and 8. In Tables 7 and 8, models are labelled as M1–
M15 for men’s data and W1–W15 for women’s data and indicate which predictors are included
as linear terms and which are modelled by using monotone or P-spline assumptions.

From the numbers in Tables 7 and 8, we see that xGAIC selects similar models in men and
women: model M14 for men and W14 for women. Models M14 and W14 are defined by using
monotone assumptions for three auxiliaries and one linearity assumption for the fourth, as well
as providing the smallest σ̂2

u-values in men and women.
In contrast, cGAIC selects model M13 in the case of men and model W9 in the case of

women. The first is a model with two linear terms and two P-splines terms, whereas the latter
is the Fay–Herriot model defined by using the four predictors.
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Fig. 3. Relationship between the auxiliary variables and the response variable (log(Ydir)) in men

In this case, unlike the first application, the linearity assumptions do not seem to be sensible,
at least for the four predictors (Fig. 3) which, jointly with the coincidence with the smallest σ̂2

u,
evidence that xGAIC performs well, and better than cGAIC.

6. Conclusions

A mixed Akaike information measure xGAIC has been defined that is an important novelty
to be incorporated in the debate on the use of marginal or conditional approaches. xGAIC is a
compromise solution derived from a quasi-log-likelihood and an empirical estimator of GDF.

There is a broad range of other settings involving models with random effects, outside small
area problems, where versions of the xGAIC-criteria, defined as suggested in this paper, using a
mixed approach, could be investigated. We have shown that xGAIC is easily derived for complex
models and has very good behaviour in SAE applications. These properties induce optimism
about the suitability of the new criterion in other settings.

We have shown, using simulation studies and two real cases, that the mixed approach out-
performs the conditional approach, which had been, until now, the most recommended
approach in the SAE literature. This conclusion comes from simulated realistic scenarios in
which a linear relationship of the predictors with the response cannot, or should not, be as-
sumed, and from considering parametric and non-parametric model formulations.

The simulations have shown that xGAIC performs remarkably better than cGAIC or vAIC
for selecting the functional form of the fixed part of the model, and also as a variable selection
criterion. This assertion is supported by a rather smaller classification error rate, when the real
model is not linear, but also by a smaller RRMSE of the random-effect variance parameter.
When a linear model is simulated, the success rate is slightly higher by using cGAIC. Neverthe-
less, the model selected by xGAIC is also valid and provides inferences with the same efficiency,
or with a very small loss, with respect to the model that is selected by cGAIC.
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The conclusions from the analysis of the two real cases are more interesting. The socio-
economic case is an example in which only one predictor is considered and the linearity
assumption is correct. According to simulations, the differences between the GAIC-values from
different candidate models are very small. Surprisingly, cGAIC selects a monotone model with
a higher σ̂u than xGAIC, which selects a linear model.

In the second case, several predictors, which can hardly be assumed to have a linear relation-
ship with the response, are considered. The differences between the xGAIC and cGAIC model
selection are bigger in this case. Note that the values of σ̂u that are obtained from cGAIC-models
are bigger than the values of σ̂u from the xGAIC-models.

One should take into account the fact that the two real cases that were analysed correspond
to small random-effect variability scenarios and, in both cases, the model-based estimators are
close to the direct estimators.

We should point out, and show the simulations as support, that the consequences of using
a conditional GAIC to select the model can be serious because standard approaches to make
inferences on small areas are very dependent on the model assumptions and these assumptions
are wrong when GAIC incorrectly selects a simpler model than the true model.

In fact, this question of dependence on the model assumptions has been treated lightly in
the SAE literature. The common practice of comparing estimators by comparing the estima-
tors of the mean-squared errors is not the most desirable practice, as the mean-squared error
estimator may be model dependent. Occasionally, in practice, estimators are proposed that are
not better than the direct estimators because an incorrect model is being used. More often,
better solutions than those provided by using a given model, usually linear, could be provided
by carrying out a model selection check and by trying different (including non-parametric)
models.

In SAE applications, model selection means estimator selection. A clear advantage of using
AIC-measures for this purpose, over the use of mean-squared error estimation, is that the se-
lection is less dependent on the model assumed. Besides, the GDF-estimator is interpretable
as an absolute inverse distance measure between the model-based estimator and the direct
estimator. More explicitly, in a problem with p predictors, D areas (D > p) and the choice
of a random effect, GDF would range, from an approximated maximum value D, which
corresponds to a case where the mixed estimators are equal to the direct estimators, to an
approximated minimum p corresponding to a model with linear fixed effects, and no random
effects, which provides synthetic estimators that are at a maximum distance from the direct
estimator.

A step further on the subject of model selection in SAE applications would be to focus on the
estimation of the area parameters instead of model selection and, in particular, to explore the
behaviour of different AIC-measures to solve the problem of choosing between mixed and syn-
thetic estimation approaches, at the same time as the selection of predictors and the functional
form. This will be part of our future work.
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Appendix A: Maximum likelihood estimators under Fay–Herriot model

For the Fay–Herriot model

Y =Xβ+Zu + e

with u ∼N.0, Σu =σ2
uID/ and e ∼N.0, Σe/ independent distributions. The ML estimators are obtained as

follows. The log-likelihood is

l.β, σ2
u; y/=− 1

2 D log.2π/− 1
2 log |V|− 1

2 .Y −Xβ/′V−1.Y −Xβ/:

The first-order derivatives of l are

@l

@β
=X′V−1Y −X′V−1Xβ,

@l

@σ2
u

=−1
2

@ log |V|
@σ2

u

− 1
2

.Y −Xβ/′ @V−1

@σ2
u

.Y −Xβ/:

Applying the differentiation formulae:

@V

@σ2
u

=Z′Z,

@log|V |
@σ2

u

= tr
(

V −1 @V

@σ2
u

)
= tr.V −1ZZ′/,

@V −1

@σ2
u

=−V −1 @V

@σ2
u

V −1 =−V −1ZZ′V −1:

We obtain that

@l

@σ2
u

=− 1
2 tr.V−1ZZ′/+ 1

2 .Y −Xβ/′V−1ZZ′V−1.Y −Xβ/:

We define

Tu = .Z′Σ−1
e Z+σ−2

u ID/−1:

Applying the inversion formula .A+BCD/−1 =A−1 −A−1B.C−1 +DA−1B/−1DA−1, we obtain

Tu =σ2
uID −σ4

uZ′V −1Z:

We can write

tr.V−1ZZ′/= tr.ZV−1Z′/= 1
σ4

u

tr.σ4
uZ′V −1Z/:

Adding and subtracting σ2
uID in the above expression, we obtain

tr.V−1ZZ′/= 1
σ4

u

tr.σ2
uID −T/= 1

σ2
u

{
D− 1

σ2
u

tr.Tu/

}
:

Then, the likelihood equations are

β̂= .X′V̂
−1

X/−1X′V̂
−1

Y

and

1

σ̂2
u

{
D− 1

σ̂2
u

tr.T̂ u/

}
= .Y −Xβ̂/′V̂

−1
ZZ′V̂

−1
.Y −Xβ̂/:

Then, multiplying and dividing by σ̂4
u in the above expression and defining

û = Σ̂uZ′V̂
−1

.Y −Xβ̂/,
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the second ML update equation of σ2
u is

1

σ̂2
u

{
D− 1

σ̂2
u

tr.T̂ u/

}
= 1

σ̂2
u

û′û,

or

σ̂2
u = û′û

D− .1=σ̂2
u/tr.T̂u/

where T̂u is the empirical version of Tu.
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