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ABSTRACT

This paper presents consistent and fast bootstrap methods for constructing
nonparametric prediction intervals for autoregressive processes. These meth-
ods are compared. in a simulation study, with the Box-Jenkins appruach and

Thombs-Schucany's bootstrap method.

1 INTRODUCTION

One of the main aims of statistical analysis is prediction. Often, statis-
ticians formulate a model which incorporates the essential characteristics of a
real phenomenon. This model usually depends on some finite number of para-
meters which have to be properly estimated. This is useful not only to examine
the influence of each of the variables which take part in the real situation, but
also to predict the future behaviour of the real system when the values of some
of these variables are known. This is of special interest in time series analysis.

In many practical situation we are given a sample of real data Y; observed in
time. Often these data are dependent upon each other, and in many practical
problems they are succesfully assumed to follow an autoregressive model. In
this context. our prediction problem may be the following: find a random set
(an interval for instance) which covers, with a high probability, the possible
values of a future observation Y., given the series up to time ¢.

The classical approaches to the problem of finding prediction intervals for
autoregressive time series assume that the underlying distribution of the ervor
process is known. Typically, this is not the case in practice and prediction in-
tervals constructed under the assumption of a specific distribution (the normal
for the Box and Jenkins {(1976) procedure) may produce poor results when this

condition fails.
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The arguments given above have motivated some authors to introduce boot-
strap methods, not only for constructing prediction intervals but also for fore-
casting. This is the case of Stine (1987) and Findley (1986) who used the
buotstrap tu estimate the mean squared error of the forecast. More connected
to our problem, Thombs and Schucany (1990) propose a bootstrap resampling
plan to compute prediction intervals for an autoregressive model.

Suppose we are dealing with an AR(p) process. Thombs and Schucany
propose to fix the last p values of the series and draw first backward and then
forward bootstrap realizations: Y, Y%, ..., Y4, Details about the way in
which this procedure is carried out will be given in Section 2.

The bootstrap prediction interval is based on the bootstrap distribution of
Yyt . These authors prove that the bootstrap distribution is asymptotically
correct and they also present a simulation study in which this bootstrap ap-
proach clearly beats Box-Jenkins intervals when the error distribution is not
normal (the results for both methods are very similar for the normal case).

The major drawback of Thombs and Schucany’s approach is that the al-
gorithm is relatively time-consuming. This is due partly to the fact that we
have to draw plenty of bootstrap replications (this is unavoidable in most of
uses of the bootstrap), but mainly to the part of the algorithm in which every
backward boostrap resample has to be modeled by an AR(p) structure, and
the parameters estimated. In some contexts the requirement of a fast method
of predicting future values is absolutely needed. An example, involving fast
prediction of concentrations of SOj in six tracking stations in the surroundings
of a coal-fired power station in Spain, can be found in the paper by Garcia-
Jurado, Gonzélez-Manteiga, Prada-Sénchez, Febrero-Bande and Cao (1995).
These authors propose an extension of the Thombs and Schucany’s method
to the ARI case. However, the computational speed already mentioned in
that paper had to be improved due to an ifnportant increase in the number of
tracking stations for which the predictions were needed (from 6 to 17 tracking

stations).
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In this paper we present alternative consistent bootstrap methods for con-
structing prediction intervals for an AR(p) model, designed to save computer
time. These methods, as Thombs and Schucany’s method, are nonparametric
approaches to the problem and are still valid when the ervor distiibution is
not Gaussian. Our methods differ from Thombs and Schucany’s approach in
the backward resampling. We do not draw backward resamples. consequently
we do not incorporate the variability coming from parameters estimation. For
this reason, we refer to both methods as the conditional bootstrap. It is in-
tuitive that such algorithms are much less time-consuming than Thombs and
Schucany’s and, even so, are proved to work asymptotically in the same sense
as Thombs and Schucany did.

Section 2 contains a description of the proposed bootstraps. The correct
asymptotic behaviour of these resamplings is detailed in the results presented
in Section 3. Finally, Section 4 contains a small sample Monte Carlo study
which compares the two bootstrap methods proposed here with Thombs and

Schucany’s bootstrap and the standard Box-Jenkins method.

2 BOOTSTRAP PREDICTION INTERVALS

Assume that we are given the data vector (y;,%2,...,y) which consists

of ¢t consecutive observations of an AR(p) process:
Ys :5+¢1Ys—1 +... +¢st—p+a5 , 8= --.,*‘2,—110,1,2,-”, (1)

where the errors a, are zero-mean and independent random variables with
common distribution F, and Var(a,) = 2. Let us assume, in addition, that
the roots of the polynomial ®(B) = 1 — Y7_, ¢;B* lie outside the unit circle
-in other words the process is stationary— and fix our attention in time ¢ + k.

As mentioned above, there exist several methods to construct prediction
intervals for the variable Y;.y. We mention the widely used Box-Jenkins pro-

cedure (see Box and Jenkins (1976) ) given by
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where Yy = 6+ Yo (ﬁj}}”k 5, 2 is the two-tailed [ quantile of the standard
normal distribution. 8, 0% and éj, j=1,2,...,pare the least squares estimates
of the parameters and zf',-, J =1,2,... are the coefficients of the polynumial
¥(B), computed from the formula ¥(B) = & 1(B).

There is a refinment of this prediction interval, given by Stine (1987), which
incorporates a bias-corrected estimate of the second order term in the asymp-
totic formula of the prediction mean squared error. In this case, the standard
normal quantile is replaced by the quantile of a ¢ distribution with estimated
degrees of freedom.

A nonparametric alternative to the intervals mentioned above are the boot-
strap-based prediction intervals. They are constructed in order to produce
asymptotically correct coverage rates under no parametric assumption on the
error distribution. The idea behind the method is quite simple.

Let us denote by Hy(x) the unconditional distribution function of the ran-
dom variable Yiyx — Yiix (a more plausible possibility is to deal with the
distribution of the previous variable conditionally on the last p observations
of the series, or even to the whole series). Assume for a moment that Hy(z)
were known (of course this is only a theoretical device, never true in practice),

then a theoretical prediction interval at time ¢ + k& would be:
. . 3
<Y’,+k + H;! <§)  Yer + H! <1 - %) > . (3)

H; Yp) = inf{x|H(x) > p}.

where

Since the distribution function Hy is not known, one can estimate it by using
bootstrap methods and then plug its quantiles in {3) to get a bootstrap pre-
diction interval. The differences among the possible bootstrap approaches to

the problem will come from the differences in the resampling plans used.
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Stine’s (1987) proposal proceeds as follows:

s

e First. draw a bootstrap initial block (Y, .Y, 5. .., Yy) of p consec-
utive observations of the series. This is done by drawing with equiprob-

ability one of the t — p possible blocks.

e Draw the quantities a} with replacement from a corrected empirical dis-

tribution function of the residuals.

e Construct further bootstrap cbservations using the equation:
Yi=84+Y, + Yo, tal, s=1,2,...t,
namely, the bootstrap analog of (1).

e Compute 6" and 43}*, j =1,2,...,p, the least squares estimates of the

parameters for the replicated series (¥*, Yy, ..., Y/).

e Compute the value Yt;k in the same manner as Y 4 in (2) but replacing

the quantities based on the sample by their bootstrap analogs.

This resampling plan is not effective for bootstrapping prediction, although
it is very appropriate for bootstrapping the parameters of the series. The
reason is that it does not focus on replicating the conditional distribution of
the value Y, given the observed values (or equivalently. for the AR(p) case,
the last p values), but on replicating the random mechanism in parameter
estimation.

On the other hand, Thombs and Schucany’s (1990) bootstrap is designed
to mimic the conditional distribution of the future value given Y;_p.;,... .Y,

The method consists of the following steps:

e Fix the last p values of the series and construct the centered and rescaled

backward residuals:
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where

Gi=Yi=b—Yii— . =Yy, i=12.t—p,

¢ Draw backward buotstrap replications of the form

(Y7,....Y

t-p

YY),
where
Y=Y, forj=n-p+1,....1t
Y =8+ Yt Y, H e =12, t-p
and €'; are artificial values drawn from the empirical distribution of the

backward residuals é’j, j=1,2,...,t —p

e Fit the replicated series to an AR(p) model and estimate the parameters.
Denote by 6* and (Z;I' b ,(131,‘ the paramaters estimates of the bootstrap

verision of the series.

e Draw forward bootstrap errors @'; from the empirical distribution of the

centered and rescaled forward residuals:

1/2 n-p
n— 1
di:[n QP] (d;—‘; Edj)’
- P n Y j=1

where
fli:)/i“g—@yid*w-—(ljpyi——p, t=p+1l,p+2,...,¢t

and construct the forward bootstrap realizations Yo Yie, - Y, based

on these bootstrap errors and the estimated bootstrap parameters:

Yo, =0+ oY A GY T d,, =12,k
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As already mentioned, the major drawback of Thombs and Schucany’s
bootstrap is the long computations needed for constructing a single bootstrap
realization Y.

The methods that we present below avoid this fact by means of a completely
conditional bootstrap. The only difference between them comes from 13}“ the
estimator of F, which is used in each. Once we have estimated the coeflicients

of the model, we only resample the future values Y)', ..., Y%« Theresampling

proceeds as follows:

o Estimate the parameters of the model using the least squares estimators,
center the residuals, rescale them — as suggested by Stine (1987) - and
construct the empirical distribution function of the residuals Fa‘ as done

in Step 4 of Thombs and Schucany’s method.

o Draw the bootstrap errors aj, s =t+1,...,t+k independently and with

replacement from Fy.

e Define Y = Y, forevery s = t—p+1,...,t and compute future bootstrap

observations using the equation:
Ya*:5+q§1y’.s‘—-l++¢l’}/stp+a\; S:t+17"':t+ku
which are, in a sense, estimated possible future values of the series.

o The bootstrap distribution of Y% is used to approximate the unknown
distribution of Y, given the observed sample. Hence, bootstrap predic-

tion intervals are found based on this bootstrap distribution.

There is much to say about the question: is the previous method a bootstrap
method?  Indeed. it is a bootstrap method as far as it proposes to draw
artificial samples from a distribution which was constructed as an estimator of
some underlying unknown distribution. On the other hand, these resamples are

only drawn for constructing future bootstrap realizations. In other terms, the
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resampling mechanism is not used to draw bootstrap replicates of the original
series but of some future values of the series, which are not observed at the
sampling time but will be observed after some time. This is the reason why
we call it the conditional bootstrap.

For better understanding. one may think of the method proposed here
in the following way: using expression (1) one can regard Y4 as a sum of
some terms depending only on the observed series and the true parameters
and other terms which are linear combinations of the future errors ag, with
s =t+1,...,t +k, whose coeflicients depend on the unknown parameters.
As a consequence, the conditional distribution of Y, given the observed se-
ries (Y1, Ys, ..., Y}:) is essentially a convolution of & distributions obtained from
rescaling the error distribution F,. The conditional distribution of Y, would
be known if the true parameters and the error distribution were known. A
reasonable estimator of that conditional distribution could be defined by re-
placing those theoretical values and distribution by the least squares estimators
of the parameters and the estimator Fa of the error distribution. Since the ex-
act computation of this distribution is very time-consuming, in general, the
method proposed here approximates it by Monte Carlo, i.e., drawing bootstrap
resamples a2, s = t+ 1,...,t + k. Nevertheless, for very small k (k = 1,2},
the calculations of the exact bootsirap distribution in a computer are less time-
consuming than the Monte Carlo approach.

As an alternative, we could also use a kernel estimator Fa'h of the error
distribution function, with bandwidth h. This version only differs in the re-
sampling plan used. If we have strong evidence that the error distribution
is continuous, we may draw bootstrap errors a} from a kernel density esti-
mator, see Parzen (1962), based on the recentered and rescaled residuals d,
s=p+1,p+2,...,t, with a given bandwidth h. This smoothed version of the
bootstrap typically has second order efliciency properties (see De Angelis and

Young (1992) for a nice review and Wang (1995) for some improved version
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of the smoothed bootstrap). Of cowsse, any other information (parametric or
not) about the error distribution should be incorporated in the method pro-
posed above. For instance, if we happen to know that the error distribution
is normal, we do not need to approximate the conditional distribution of Y,y
given (Y1.Ys,....Y)). because the convolutive part of it is also normal with
some variance depending on the estimated parameters.

Extensions of these conditional boustraps to the context of ARI models
(with a similar spirit of that presented in the paper by Garcia-Jurado et al
(1995) for the Thombs and Schucany’s method) are open problems of future

research.

3 ASYMPTOTIC RESULTS

Suppose we have observed the series (y;,ya,...,¥;) from an AR(p) process
and we want to predict & instants ahead. The new algorithm presented in Sec-
tion 2 ylelds a bootstrap prediction interval for Yy,;. We intend to state the
large-sample validity of the intervals obtained using this algorithm. Since the
interval is based on the bootstrap distribution of ¥/, to have asymptotically
correct coverage probability it suffices to prove convergence in conditional dis-
tribution of the bootstrap version Y to ¥ix. The following theorem states

this result.

Theorem 1 Let Y; be an AR(p) process with E(as) = 0 and E(|as]®) < oo
for some a > 2. Assume in addition that the bandwidth parameter h tends to
zero. Then, under either the smoothed or nonsmoothed resampling plans of the

bootstrap algorithm presented in Section 2, we have that:
t-‘Hs: —4 Yir

for almost all sample sequences.
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Sketch of the proof:

First, we deal with the nonsmoothed case. For k = 1 the proof is exactly
the same as in Theorem 3.1 of Thombs and Schucany (1990) but replacing

expression (3.3) by
Vi =0+ 4.+ Y +ag =

=6+ P V4. GV ptal,,

Observe that in this case it is trivial that the bootstrap convergence in condi-
tional probability,
(f;kyﬁu N ¢;kYr+1~A~»
holds almost surely.
The proof continues with an induction argument in an analogous way to
the proof of Thombs and Schucany’s result.
The same arguments may be used in the proof of the smoothed case. The

only part which is really different is the proof of the convergence in distribution,

with probability one.
Denote by ¢4, ¢4 and g the characteristic functions of IR Fa,h and
the kernel K, respectively and recall the convolutive structure of the kernel

estimate of the error distribution (see Parzen (1962)),
Fon(z) = /_U; Jan(t) dt,

where fo5(t) = [ 1/hK((t —y)/h)Fan(dy). Then the following equation holds:
Ganlt) = Px (Wt)palt).

Now, it becomes trivial that

lim an(t) = lim @a(t)

n—oC n-—ac
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and since convergence in distribution is equivalent to pointwise convergence
of the characteristic functions, the almost sure convergence in distribution for

the smoothed bootstrap follows from the unsmoothed case.

4 A SIMULATION STUDY

Some properties of the Box-Jenkins method (BJ), the Thombs and Schu-
cany’s bootstrap (TS), and this new conditional bootstrap (CB) with its smoothed
version (SCB) are compared by means of a simulation study. The AR(2) model
given by Y, = 0.75Y;; — 0.5Y,.5 + a, was considered and three different dis-
tributions for the error term a, specified: a standard normal (N), a shifted
exponential distribution on the interval [—1, co) with scale parameter equal to
one and zero mean (E) and the normal mixture consisting of a N(—1,1) with
probability 0.9 and N(9,1) with probability 0.1 (M).

In every case a series of length 50 was generated from the model given
above. These values correspond to the generation after an initial period of
stabilization (starting at zero and neglecting the first 300 values drawn). With
every sample 1, 2 and 3-lag 99% prediction intervals were constructed using
the four mechanisms and their coverage probabilities and mean lengths were
estimated by Monte Carlo using 1000 simulated values of the series at instants
51, 52 and 53. The number of bootstrap replications was set to 1000.

Finally, the previous process was carried out with a total number of 100
simulated series —to provide the randomness due to the conditional construc-
tion of these intervals— and the mean and standard deviation of the coverage
rates and the lengths were computed. The probability that the conditional
prediction intervals exceed the nominal value —denoted by y— was estimated

along these 100 simulated samples. The results arve in Table [.
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TABLE I
error dist. | lag | method | coverage coverage leugth length ~
mean std. dev, mean std. dev.
N 1 BJ 97.76 0.16 4.86 0.05 0.19
TS 97.26 0.21 4.88 0.07 0.16
CB 95.53 0.29 4.42 0.06 0.06
SCB 98.49 0.14 5.37 0.07 0.46
N 2 BJ 97.19 0.25 5.98 0.07 0.22
TS 97.55 0.25 6.28 0.08 0.26
CcB 97.07 0.28 6.12 0.08 0.14
SCB 98,36 0.19 6.73 0.09 0.41
N 3 BJ 97.53 0.23 6.03 0.07 0.16
TS 97.36 0.22 6.40 0.08 0.28
CB 97.33 0.26 6.17 0.08 0.19
sSCB 98.54 0.20 6.80 0.09 0.47
E 1 BJ 95.85 0.25 4.72 0.10 0.03
TS 97.97 0.22 4.97 .14 0.38
CB 96.13 0.46 4.50 0.13 0.24
sCB 9R.35 0.18 5.43 0.15 0.42
E 2 BJ 95.73 0.34 5.78 0.12 0.05
TS 97.86 0.26 6.10 0.15 0.37
CB 96.74 0.33 5.78 0.14 0.22
SCB 98.19 0.22 6.57 0.16 0.39
E 3 BJ 95.88 0.34 5.82 0.12 0.06
TS 97.95 0.26 6.20 0.15 0.39
CB 97.08 0.3t 5.85 0.14 0.25
SCB 98.17 0.24 6.60 0.16 0.43
M 1 BJ 92.01 0.30 14.85 0.31 0.05
TS 97.78 0.28 14.79 0.19 0.43
CB 95.39 0.34 13.38 0.14 0.08
SCB 99.10 0.20 16.45 0.20 0.80
M 2 BJ 94.08 0.59 18.15 0.40 0.12
TS 98.13 0.27 18.96 0.35 0.43
CB 97.00 0.53 18.43 0.35 0.34
SCB 98.68 0.24 20.58 0.38 0.60
M 3 BJ 94.22 0.59 18.29 0.40 0.13
TS 98.20 0.34 19.29 0.36 0.46
CB 96.99 0.63 18.49 0.37 0.32
SCB 98.49 0.36 20.70 0.39 0.57

Means and standard deviations of the coverage probabilities and the lengths for the 1, 2 and 3-lag 99%
prediction intervals constructed using the Box-Jenkins method, Thombs and Schucany's bootstrap, the

conditional bootstrap method and its smoothed version for 100 samples of series of length 50.

An important matter concerning the SCB method is the choice of the band-
width in the resampling. The criterion we adopted was to select the bandwidth
in order to minimize the mean integrated squared error when estimating the
underlying distribution function by means of a smoothed version of the empir-
ical cdf. Azzalini (1981) shows that such a minimizer is asymptotically equal

to:
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L 2 () K(2)de) de ) v
( . :”\"(;)d;) n [ f'(x)%dx

when the kernel support is [-1.1}. In the simulation study the triangular kernel

hamise =

was used. The only unknown quantity in this expression is [ = [ f'(x)*dz,
which may be estimated, unce again, using the kernel method by

3 o [ X =X
I=- ISZA”(”<———J>.

g’ 7 g

See Hall and Marron (1987) for details.
The asymptotically optimal choice of the pilot bandwidth g, in terms of

the mean squared error, is

) 1/9
5 KO p?

n? (f K2y f@?)°

For the particular choice of Gaussian kernel and the specific assumption of a

normal distribution, gp is only a function of the underlying standard deviation,

807\ 1/°
go = (“) a,

3n?

namely.

which is estimated by replacing the standard deviation by its empirical ana-
logue. This data-driven pilot bandwidth, gg, was used in the simulation study.
This bandwidth selector is close related to the so called plug-in rule of den-
sity estimation (see, for instance, the comparative study by Cao, Cuevas and
Gonzélez-Manteiga (1994)). Here we only consider one step and a final normal
reference. The good performance of this kind of bandwidth selection rule in
the context of density estimation (see for instance Sheather and Jones (1991))
can be also expected in our context of smooth cdf estimation. Finally, using
go as an auxiliary bandwidth to compute I and then plugging this estimator
in the expression of hpm;ss, one gets the bandwidth selector h that is used in

the smoothed bootstrap resampling. The bootstrap residuals are obtained by
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drawing observations of the recentered residuals and then adding up the value
of a deviate with N (0, %) distribution (since the primary kernel is Gaussian).

In view of the results in Table I some remarks can be made:

o All the coverage rates summarized in the previous table are significantly
different from 0.99. This is stated in the sense that the mean coverage
probability can not be assumed to be equal to 0.99 (when performing a
statistical testing of hypothesis abont the mean at a level 0.05). Further-
more, within every simulation, the differences between every pair of the

four methods are also statistically significant (at a level of 0.05).

e The smoothed conditional bootstrap (SCB) is the best method in terms
of the mean and variance of the coverage rates for the three error distri-
bution used in the simulation. This is even more evident with respect to
the quantity -y, whose optimal value is 0.5. When the error is normal, the
reason for this may be that the SCB is the only method that reasonably
fits the length of the theoretical (non observable) Box-Jenkins prediction
interval (the nominal values for the length with 1, 2 or 3 lags are 5.15,

6.8128 and 6.9334).

o Generally speaking the lengths of the intervals are similar with the only
exception of SCB which produces larger intervals than the others. This
feature is not surprising (at least with respect to CB) since. Var*(a}) =
Var*(a*) + h? [ 12K (t) di. For the particular choice of the triangnlar ker-
nel, used in the simulation study, we have Var*(a}) = Var'(a*) + h%/6.
Typically, along the simulation study, the contribution of the smooth-
ing term in the previous expression is not larger than 2% of the whole

bootstrap variance.

e Although the bandwidth choice is an important problem when using the
SCB method. the proposal made here seems to work properly indepen-

dently of the error distribution chosen.



976

CAO ET AL.

TABLE 11

TS TS B CB SCB SCB

n==80 n=100]{n=50 n=100|n=50 n=100
b= 200 | 23.10 27.93 0.03 0.03 0.06 0.10
=500 | 26.67 32.19 0.06 0.07 0.10 0.15
b=1000 | 29.75 34.29 0.13 0.13 0.18 0.22

CPU times, in seconds, (on a SUN SPARC Station 10, model 30) for computing one

prediction interval according to the methods TS, CB and SCB based on a series of

1 = 50, 100 observations and using B = 200, 500, 1000 bootstrap replications.

o The unsmoothed conditional bootstrap method (CB) is slightly worse

than the Box-Jenkins approach in the normal case but better for the
exponential and the mixture distribution. In comparison with TS, the
performance of CB is worse. However this loss is not so large and the
method may deserve some further attention in view of its enormous gain
in CPU time. To illustrate this, Table II shows the CPU times (in
seconds) for computing one prediction interval according to the methods
TS, CB and SCB based on a series of n = 50, 100 observations and using
B = 200,500, 1000 bootstrap replications. The program was run on a

SUN SPARC Station 10, model 30.

Similar considerations can be made with respect to the methods pre-
sented in the paper by Breidt et al (1995) in the sense that for each
bootstrap procedure one could define a faster method that only incorpo-

rates forward resampling.
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