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1 Introduction

Simple games can be used to model decision-making processes. Many interesting applications have

been carried out in the field of political science. Different power indices have been suggested in

order to assess the a priori distribution of power in a voting body. However, we arise far from

consensus over the issue of choice of an appropriate power index in a given context. In fact, in

many papers, the choice of the power index is not theoretically justified and several power indices

are employed.

The main power indices of the literature include the Shapley-Shubik index (Shapley and Shubik,

1954), the Banzhaf index (Banzhaf, 1965), the Johnston index (Johnston, 1978), the Deegan-Packel

index (Deegan and Packel, 1979), and the Public Good Index (Holler, 1982). These measures are

based on an evaluation of an actor’s relative importance to coalition formation. In the context of

simple games, a winning coalition is vulnerable when it has at least one member whose removal

would cause the resulting coalition to be a losing coalition. An agent is considered critical when

his elimination from a winning coalition turns this coalition into a losing coalition. A minimal

winning coalition is one such that all its members are critical. In this paper the last three indices

are further examined.

In Banzhaf’s model, power of an agent is proportional to the number of coalitions in which he

is critical. Johnston argued that the Banzhaf index, which is based on the idea of a removal of

a critical voter from a winning coalition, does not take into account the total number of critical

members in each coalition. Clearly, if a voter is the only critical agent in a coalition, he enjoys far

more power than in the case where all agents are critical. This is the main idea underlying the

Johnston index.

According to Deegan and Packel, only minimal winning coalitions should be considered in

establishing the power of a voter. They proposed an index under the assumptions that all minimal

winning coalitions are equiprobable and all the voters belonging to the same minimal winning

coalition should obtain the same power.

The Public Good Index is determined by the number of minimal winning coalitions containing

the voter divided by the sum of such numbers across all the voters. Holler (1982) proposes that

only minimal winning coalitions should be considered when it comes to measuring power and the

outcome is a public good. This is not to say that merely minimal winning coalitions will form.

However, coalition with surplus players are formed by luck as they invite free-riding if (opportunity)

costs are implied with coalition membership (e.g., responsibility). In a recent publication, Braham

(2005) postulates that a causal explanation of the coalition outcome necessitates to focus on

minimal winning coalitions1.

1Let’s assume simple majority voting and a winning coalition {A,B,C} with A controlling 30 per cent of votes
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In this paper, it will not be discussed which index is most appropriate as the choice of an index

may well depend on the situation under analysis. To facilitate this choice, some desirable properties

have been introduced in the context of power indices. In this paper, some of these properties will

be mentioned, as well as some characterizations of the main power indices according to them. In

Lorenzo-Freire et al. (2007), new characterizations of Deegan-Packel and Johnston indices are

obtained with monotonicity properties. In this paper, a new characterization of the Public Good

Index by means of a property of monotonicity with a similar flavour is provided and the other

indices are revisited comparing new and old characterizations.

One of the main difficulties with these indices is that computation generally requires the sum

of a very large number of terms. Owen (1972) defined the multilinear extension of a game. It

gives the expected utility of a random coalition. The multilinear extension has been used by Owen

to compute the Shapley value (Shapley, 1953) and the Banzhaf value (Owen, 1975). Both values

are probabilistic (Weber, 1988), that is to say, values that satisfy the property of additivity. The

multilinear extensions are useful in computing the power of large games such as the Presidential

Election Game and the Electoral College Game studied by Owen (1972). The multilinear extension

approach has two advantages: thanks to its probabilistic interpretation, the central limit theorem

of probability can be applied, and, further, it is applied to composition of games.

The main objective of this paper is to analyze whether some modification of the multilinear

extension technique might be used to calculate the indices of Johnston, Deegan-Packel, and Pub-

lic Good Index. To the best of our knowledge, the multilinear extension has not been applied

to values which are not probabilistic. These three indices are defined on the basis of either vul-

nerable coalitions (in the case of Johnston index) or minimal winning coalitions (in the case of

Deegan-Packel index and Public Good Index). Sometimes, however, it is not known a priori which

coalitions are vulnerable or minimal winning, even though the game is known, specially in games

with a large number of players. Obviously, in such a case it is very difficult to compute these

indices. The advantage of the procedures presented here is that if the multilinear extension of the

game is known, an algorithm to easily compute these indices can be provided.

In Section 2, the main notions related with characteristic function games and simple games are

given. Section 3 is devoted to a review of the main power indices and their axiomatic character-

izations. In Section 4, the procedures to calculate the Johnston index, the Deegan-Packel index,

and the Public Good Index by means of the multilinear extensions are introduced. In Section 5,

they are applied to the Basque Country Parliament and the Victoria Proposal for Amendments

to the Canadian Constitution. Section 6 concludes.

and B and C controlling 25 per cent of votes each. Then, the minimum winning coalitions {A,B} and {A,C} are

responsible for the outcome of coalition {A,B,C}. Obviously, neither B nor C were ”causal” for the outcome of

coalition {A,B,C}.
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2 Preliminaries

2.1 Characteristic function games

A characteristic function game is a pair (N, v) , where N = {1, . . . , n} is the set of players and

v, the characteristic function, is a real function on 2N = {S : S ⊆ N} with v (∅) = 0. A subset

S ⊆ N is called a coalition. G (N) denotes the set of characteristic function games with set of

player N. Shorthand notation will be used and will be written S ∪ i for the set S ∪ {i} and S\i
for the set S\ {i} .

A null player in a game (N, v) is a player i ∈ N such that v (S ∪ i) = v (S) for all S ⊆ N\i.
Two players i, j ∈ N are symmetric in a game (N, v) if v (S ∪ i) = v (S ∪ j) for all S ⊆ N\ {i, j} .

Given a family of games H ⊆ G (N) , a solution (or a value) on H is a function f , which

assigns to a game (N, v) ∈ H a vector

(f1 (N, v) , . . . , fn (N, v)) ∈ Rn,

where the real number fi (N, v) is the payoff of the player i in the game (N, v) according to f. It

is useful to single out a list of desirable properties of solutions.

A solution f is additive if f (N, v + w) = f (N, v) + f (N, w) for every (N, v) , (N, w) ∈ H

such that (N, v + w) ∈ H, where (v + w) (S) = v (S) + w (S) for every S ⊆ N .

A solution f satisfies the null player property if fi (N, v) = 0 for every (N, v) ∈ H and every

null player i ∈ N.

A solution f is symmetric if fi (N, v) = fj (N, v) for every (N, v) ∈ H and for every pair of

symmetric players i, j ∈ N.

A solution f is efficient if
∑

i∈N fi (N, v) = v (N) for every (N, v) ∈ H.

A solution f satisfies the total power property if

∑

i∈N

fi (N, v) =
1

2n−1

n∑

i=1

∑

S⊆N\i
[v (S ∪ i)− v (S)] for all (N, v) ∈ H.

Well-known values for G (N) are the Shapley value (Shapley, 1953) and the Banzhaf value (Owen,

1975). Shapley (1953) characterizes the Shapley value and Feltkamp (1995) the Banzhaf value

using some of the properties mentioned above. Those characterizations are recalled here.

• The unique solution f defined on G (N) that satisfies additivity, null player, symmetry, and

efficiency is the Shapley value. Given a game (N, v) ∈ G (N) , the Shapley value assigns to

each player i ∈ N the real number:

ϕi (N, v) =
∑

S⊆N\i

s! (n− s− 1)!
n!

[v (S ∪ i)− v (S)] .
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• The unique solution f defined on G (N) that satisfies additivity, null player, symmetry, and

total power is the Banzhaf value. Given a game (N, v) ∈ G (N) , the Banzhaf value assigns

to each player i ∈ N the real number:

βi (N, v) =
1

2n−1

∑

S⊆N\i
[v (S ∪ i)− v (S)] .

Notice that only one property differentiates both characterizations. The Shapley value satisfies

efficiency meanwhile the Banzhaf value satisfies total power.

Young (1985) proposed the strong monotonicity property. A solution f satisfies strong mono-

tonicity if fi (N, v) ≥ fi (N, w) for every pair of games (N, v) , (N, w) ∈ H and for all i ∈ N such

that v (S ∪ i)− v (S) ≥ w (S ∪ i)−w (S) for all S ⊆ N\i. Using this property, Young proposed an

alternative characterization of the Shapley value.

• The unique solution f defined on G (N) that satisfies strong monotonicity, symmetry, and

efficiency is the Shapley value.

Lorenzo-Freire et al. (2007) give a corresponding characterization of the Banzhaf value.

• The unique solution f defined on G (N) that satisfies strong monotonicity, symmetry, and

total power is the Banzhaf value.

2.2 Simple Games

An important subclass of characteristic function games is the class of simple games. A simple

game is a characteristic function game (N, v) such that:

• v (S) = 1 or v (S) = 0 for every S ⊆ N .

• v is a monotone function, that is, v (S) ≤ v (T ) , for every S ⊆ T ⊆ N.

• v (N) = 1.

SI (N) denotes the set of simple games with player set N. In a simple game (N, v) , a coalition

S ⊆ N is winning if v (S) = 1, and S is losing if v (S) = 0. W (v) denotes the set of winning

coalitions of the game (N, v). A winning coalition S ⊆ N is a minimal winning coalition if

every proper subset of S is a losing coalition, that is, S is a minimal winning coalition in (N, v)

if v (S) = 1 and v (T ) = 0 for any T ⊂ S. M (v) denotes the set of minimal winning coalitions of

the game (N, v) and by Mi (v) the subset of M (v) formed by coalitions S ⊆ N such that i ∈ S.

Given S ⊆ N, (N, uS) denotes the unanimity game of the coalition S, i.e., uS (T ) = 1 if

S ⊆ T and uS (T ) = 0 otherwise. Note that |M (uS)| = 1.
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A winning coalition S ⊆ N is a quasi-minimal winning coalition (or vulnerable coalition) if

there exists a player i ∈ S such that S\i 6∈ W (v). G (v) denotes the set of quasi-minimal winning

coalitions of the simple game (N, v) . It is clear that for every simple game (N, v) ,

M (v) ⊆ G (v) ⊆ W (v) .

Given a simple game (N, v), a swing for a player i ∈ N is a coalition S ⊆ N such that S\i is

a losing coalition and S is a winning one. ηi (v) denotes the set of swings for player i ∈ N . A

winning coalition S ⊆ N is a minimal winning coalition if and only if S ∈ ηi(v) for every i ∈ S. A

winning coalition S ⊆ N is a quasi-minimal winning coalition if S ∈ ηi(v) for at least one player

i ∈ S.

Let S ⊆ N , χ (S) denotes the set of critical players of S (a critical coalition), i.e., χ (S) is

the set of players i of S ⊆ N such that S is a swing for i. G(S, v) denotes the set of quasi-minimal

coalitions such that the set of players S ⊆ N are critical, that it to say, the set of quasi-minimal

winning coalitions T ⊆ N , such that χ(T ) = S. It is important to point out that χ(S) = S is

equivalent to say that S belongs to M(v). For every i ∈ N , Gi (v) denotes the subset of G (v)

formed by coalitions S ⊆ N such that i ∈ χ (S) .

3 An alternative perspective on power measures

Given a family of simple games H ⊆ SI (N) , a power index on H is a function f , which assigns

to a simple game (N, v) ∈ H a vector

(f1 (N, v) , . . . , fn (N, v)) ∈ Rn,

where the real number fi (N, v) is the “power” of the player i in the game (N, v) according to f.

The power index of a simple game can be interpreted as a measure of the ability of the different

players to turn a losing coalition into a winning one.

A set of independent properties (an axiomatic system) is a convenient tool to decide on the

use of an index. It is well-known that the indices of Deegan-Packel, Johnston, and Public Good

Index are efficient, symmetric, and assign nothing to null players, and that Shapley-Shubik and

Banzhaf indices satisfy transfer property. If the standard axiomatizations of the various indices

are considered, the Public Good Index is characterized by mergeability. In order to demonstrate

the implication of this property, for the Deegan-Packel and Johnston indices the corresponding

versions of this property are specified. In a similar way, the implication of monotonicity properties

to compare these three indices are studied, and a new characterization of the Public Good Index

with a new property with a similar flavour is provided.
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3.1 Shapley-Shubik index

Given a simple game (N, v) , the Shapley-Shubik power index assigns to each player i ∈ N the

real number

ϕi (N, v) =
∑

S∈ηi(v)

(s− 1)! (n− s)!
n!

,

where s is the number of members in S. Given n players, n! is the number of permutations,

(s− 1)! (n− s)! counts the permutations under the restriction of a coalition S.

In the class of simple games, the additivity property introduced by Shapley (1953) does not

apply because the sum of two simple games is not a simple game. Dubey (1975) proposed the

transfer property as a substitute of the additivity property and characterized the Shapley value

in this class of games.

A power index f defined on H ⊆ SI (N) satisfies the transfer property if for all (N, v) , (N,w) ∈
H such that (N, v ∨ w), (N, v ∧ w) ∈ H, f (N, v ∨ w) + f (N, v ∧ w) = f (N, v) + f (N,w) where

for all S ⊆ N

(v ∨ w) (S) = max {v (S) , w (S)} and (v ∧ w) (S) = min {v (S) , w (S)} .

The characterization is presented below.

• The unique power index f defined on SI (N) that satisfies transfer, null player, symmetry,

and efficiency is the Shapley-Shubik index.

3.2 Banzhaf index

Given a simple game (N, v) , the Banzhaf index assigns to each player i ∈ N the real number:

βi (N, v) =
|ηi (v)|
2n−1

.

For simple games, the total power property defined previously in the context of characteristic

function games can be rewritten, so as to state that power of players adds up to the total number

of swings divided by the number of coalitions which can join to player i ∈ N .

A power index f defined on H ⊆ SI(N) satisfies the total power property if
∑

i∈N fi (N, v) =

η (v) /2n−1, for every simple game (N, v) ∈ H, where η (v) =
∑

i∈N |ηi (v)| .
Dubey and Shapley (1979) characterized the Banzhaf index as follows.

• The unique power index f defined on SI (N) that satisfies transfer, null player, symmetry,

and total power is the Banzhaf index.
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3.3 Deegan-Packel index, mergeability, and monotonicity

The power index by Deegan and Packel (1979) assumes that

a) only minimal winning coalitions will emerge victorious,

b) each minimal winning coalition has an equal probability of forming, and

c) players in a minimal winning coalition divide the “spoils” equally.

These assumptions seem reasonable in a wide variety of situations. They define the Deegan-

Packel index. Given a simple game (N, v) , this index assigns to each player i ∈ N the real

number:

ρi (N, v) =
1

|M (v)|
∑

S∈Mi(v)

1
|S| . (1)

The Deegan-Packel index of a player i is equal to the sum of the inverse of the cardinality of S

for the coalitions S ∈ Mi (v), divided by the cardinality of M (v) in order to achieve normalization.

The Deegan-Packel index does not satisfy transfer property, but it satisfies the property of DP-

mergeability. Two simple games (N, v) and (N,w) are mergeable if for all pair of coalitions S ∈
M (v) and T ∈ M (w) , it holds that S * T and T * S. The minimal winning coalitions in

game (N, v ∨ w) are precisely the union of the minimal winning coalitions in games (N, v) and

(N,w). If two games (N, v) and (N,w) are mergeable, the mergeability condition guarantees that

|M (v ∨ w)| = |M (v)|+ |M (w)| .
A power index f on H ⊆ SI (N) satisfies the DP-mergeability property if for any pair of

mergeable simple games (N, v) , (N,w) ∈ H such that (N, v ∨ w) ∈ H, it holds that for all player

i ∈ N :

fi (N, v ∨ w) =
|M (v)| fi (N, v) + |M (w)| fi (N, w)

|M (v ∨ w)| .

This property states that power in a merged game is a weighted mean of power of the two com-

ponent games, where the weights come from the number of minimal winning coalitions in each

component game, divided by the number of minimal winning coalitions in the merged game.

Deegan and Packel (1979) characterized ρ as follows.

• The unique power index f on SI (N) satisfying DP-mergeability, null player, symmetry, and

efficiency is the Deegan-Packel power index.

Lorenzo-Freire et al. (2007) characterized the Deegan-Packel index replacing the property of

DP-mergeability with the property of DP-minimal monotonicity.

A power index f on H ⊆ SI(N) satisfies the property of DP-minimal monotonicity if for

any pair of games (N, v), (N, w) ∈ H, it holds that for all player i ∈ N such that Mi(v) ⊆ Mi(w),

fi(N,w)|M(w)| ≥ fi(N, v)|M(v)|.
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i.e., if the set of minimal winning coalitions containing a player i ∈ N in game (N, v) is a subset

of minimal winning coalitions containing this player in game (N,w), then the power of player i in

game (N, w) is not less than power of player i in game (N, v) (first, this power must be normalized

by the number of minimal winning coalitions in games (N, v) and (N, w)).

• The unique power index f on SI(N) satisfying DP-minimal monotonicity, null player, sym-

metry, and efficiency, is the Deegan-Packel power index.

3.4 Public Good Index, mergeability, and monotonicity

For the Public Good Index, introduced in Holler (1982), only minimal winning coalitions are

considered relevant when it comes to measuring power. Then, given a simple game (N, v), the

Public Good Index assigns to each player i ∈ N the real number:

δi (N, v) =
|Mi (v)|∑

j∈N |Mj (v)| . (2)

The Public Good Index of a player i is equal to the total number of minimal winning coalitions

containing player i, divided by the sum of these numbers for all players.

An axiomatic characterization of this index can be found in Holler and Packel (1983). This

characterization has the same flavour as the characterization of the Deegan-Packel index with the

property of DP-mergeability.

A power index f on H ⊆ SI(N) satisfies the PGI-mergeability property if for any pair of

mergeable simple games (N, v) , (N, w) ∈ H such that (N, v ∨ w) ∈ H, it holds that for all player

i ∈ N :

fi (N, v ∨ w) =
fi (N, v)

∑
j∈N |Mj (v)|+ fi (N,w)

∑
j∈N |Mj (w)|∑

j∈N |Mj (v ∨ w)| .

• The unique power index f defined on SI(N) satisfying PGI-mergeability, null player, sym-

metry, and efficiency is the Public Good Index.

A new characterization of Public Good Index is provided here, using a property similar to

strong monotonicity (Young, 1985) instead of PGI-mergeability. This property is named PGI-

minimal monotonicity. It takes into account a relation between two simple games (N, v) and

(N,w), that is, given in terms of the cardinality of the sets of minimal winning coalitions.

Definition 1 A power index f on H ⊆ SI(N) satisfies the property of PGI-minimal mono-

tonicity if for any pair of games (N, v), (N, w) ∈ H, it holds that:

fi(N, w)
∑

j∈N

|Mj(w)| ≥ fi(N, v)
∑

j∈N

|Mj(v)| ,

for all player i ∈ N such that Mi(v) ⊆ Mi(w).
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This property states that if the set of minimal winning coalitions containing a player i in game

(N, v) is a subset of minimal winning coalitions containing this player in game (N, w), then the

power of player i in game (N,w) is not less than power of player i in game (N, v) (first, this power

must be normalized by the number of minimal winning coalitions of every player in games (N, v)

and (N, w)).

For any two simple games (N, v) and (N, w), and for all i ∈ N such that |Mi(v)| = |Mi(w)|,
using the PGI-minimal monotonicity property, it holds that

fi(N, w)
∑

j∈N

|Mj(w)| = fi(N, v)
∑

j∈N

|Mj(v)| ,

that is, a relation between the power index of the player i in the two games is obtained.

In the next result, a new characterization of the Public Good Index is proposed.

Theorem 2 The unique power index f on SI(N) satisfying PGI-minimal monotonicity, null

player, symmetry, and efficiency is the Public Good Index.

The proof immediately follows from a reasoning similar to Theorem 6 in Lorenzo-Freire et al.

(2007).

3.5 Johnston Index, mergeability, and monotonicity

The Johnston index (Johnston, 1978) takes into account number of swings in a single voter group

and divides the spoils equally among the swingers. A player i ∈ N in a simple game (N, v) is

assigned with the amount given by the expression:

γi (N, v) =
1

|G (v)|
∑

S∈Gi(v)

1
|χ (S)| . (3)

The Johnston index of a player i is equal to the sum of the inverse of the cardinality of χ (S) for

the coalitions S ∈ Gi (v), divided by the cardinality of G (v) .

This index coincides with the Deegan-Packel index when G (v) = M (v) (in this case, S = χ (S)

for all S ∈ G(v)). Johnston assumes that not only minimal winning coalitions but also quasi-

minimal winning coalitions are relevant, that is, each quasi-minimal winning coalition has an

equal probability of forming and players in a quasi-minimal winning coalition divide the “spoils”

equally among the swingers.

In Lorenzo-Freire et al. (2007), a characterization of this index is given. In this characteri-

zation, a new property is introduced, in which the power of a simple game is identified with the

power for the unanimity games of critical coalitions. A power index f on H ⊆ SI(N), satisfies the

property of critical mergeability (or J-mergeability) if for any game (N, v) ∈ H such that

M(v) = {S1, . . . , Sm} and M = {1, . . . , m}, it holds that for all player i ∈ N :

fi(N, v) =
∑

S∈F

|G(S, v)|
|G(v)| fi(N, uS),

9



where F = {∩j∈RSj : ∩j∈RSj 6= ∅, R ⊆ M}. This property states that power in a game (N, v)

is a weighted mean of the power of the unanimity games of critical coalitions. The weight of a

component unanimity game, corresponding to a critical coalition S, is the proportion of quasi-

minimal coalitions where S is critical.

• The unique power index f on SI(N) satisfying critical mergeability, null player, symmetry,

and efficiency is the Johnston power index.

The Johnston index satisfies a monotonicity property, with a flavour similar to that of the

equivalent versions of the Deegan-Packel index and Public Good Index.

Definition 3 A power index f on H ⊆ SI(N) satisfies the property of J-critical monotonicity

if for any pair of games (N, v), (N, w) ∈ H, it holds that:

fi(N, w)|G(w)| ≥ fi(N, v)|G(v)|,

for all player i ∈ N such that Gi(v) ⊆ Gi(w) and for all S ∈ Gi (v) , |χ (S)v| ≥ |χ (S)w| .2

We were not successful in trying to prove that the Johnston index is the unique power index

with the above property, null player, symmetry, and efficiency. Then, it is an open problem to

obtain a characterization of the Johnston index with the previous property. Lorenzo-Freire et al.

(2007) provide a characterization for the Johnston index.

Now, in Table 1 all the previous properties are putting together, specifying which of them are

satisfied by each one of the five power indices considered in this paper.

2χ (S)v denotes the set of critical players of S in the game (N, v) .
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Table 1. Power indices and properties

Property Shapley Banzhaf Deegan Public Johnston

Shubik Packel Good

Index

Null player X X X X X
Symmetry X X X X X
Transfer X X − − −
Efficiency X − X X X
Total power − X − − −
Strong monotonicity X X − − −
DP-Mergeability − − X − −
DP-Minimal monotonicity − − X − −
PGI-Mergeability − − − X −
PGI-Minimal monotonicity − − − X −
J-Mergeability − − − − X
J-Critical monotonicity − − − − X

4 The multilinear extensions

One of the main difficulties with the Shapley and Banzhaf values is that computation generally

requires the sum of a very large number of terms. Owen (1972) defined the multilinear extension

of a game. The multilinear extension of a characteristic function game (N, v) is given by:

h(x1, . . . , xn) =
∑

S⊆N

∏

i∈S

xi

∏

j /∈S

(1− xj) v(S),

for 0 ≤ xi ≤ 1, i = 1, · · · , n.

Heuristically, h(x1, · · · , xn) can be thought of as the mathematical expectation of a winning

coalition with v (S) = 1 being formed. Moreover, it is known that composition of games corre-

sponds to composition of their multilinear extensions.

The multilinear extension of a game has been proven to be useful for computation of values.

Indeed, the Shapley value of a game can be calculated by integrating the partial derivatives of

the multilinear extension of the game along the main diagonal x1 = x2 = · · · = xn of the cube

[0, 1]N (see (Owen, 1972)). In turn, the derivatives of that multilinear extension, evaluated at

point (1/2, 1/2, . . . , 1/2), give the Banzhaf value of the game (Owen, 1975). These results, in

conjunction with the above mentioned properties of multilinear extensions, allow to simplify the

calculation of Shapley and Banzhaf values for games with a large number of players.
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In the same way, this procedure is used in this paper to make possible the computation of the

Deegan-Packel index, the Public Good Index, and the Johnston index.

4.1 The multilinear extension of the Deegan-Packel index

In this section, the Deegan-Packel power index of a simple game (N, v) is computed using the

multilinear extension procedure. First, the next lemma (Owen (1972)), which provides a simple

method to compute the multilinear extension of a game as a linear combination of unanimity

games, is considered.

Lemma 4 (Owen, 1972). If a characteristic function game (N, v) can be written in the way

v =
∑

S⊆N

cSuS, then, the multilinear extension of this game is:

h (x1, . . . , xn) =
∑

S⊆N

cS

∏

i∈S

xi,

for 0 ≤ xi ≤ 1, i = 1, · · · , n, where cS is a constant for every S ⊆ N and uS is the corresponding

unanimity game.

It is well known that every game (N, v) ∈ G (N) can be written as a linear combination of

unanimity games. Moreover, if the game (N, v) is a simple game, it holds that:

v =
∑

S⊆N
S∈W

cSuS .

By the previous lemma, the multilinear extension of a simple game (N, v) is:

h (x1, . . . , xn) =
∑

S⊆N
S∈W

cS

∏

i∈S

xi,

where it holds that cS = 1 if S ∈ M (v) .

Next, the procedure (using the multilinear extension of the game) to obtain the Deegan-Packel

power index of a simple game is described. The advantage of this result resides in the fact, that

the set of minimal winning coalition is not always known a priori, also this procedure gives a

method to efficient compute this index, specially in case the number of players is large or when

the game can be written as a composition of several games (see Owen (1995)).

Theorem 5 Let (N, v) be a simple game. The Deegan-Packel power index for every player i ∈ N

can be computed by the following procedure:

1. Obtain the multilinear extension h (x1, . . . , xn) of the game (N, v).

2. In the previous expression, eliminate the monomials cS

∏
i∈S

xi where S ⊆ N and cS 6= 1. A

new multilinear function l (x1, . . . , xn) is obtained.
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3. Let p be the minimum degree of the monomials
∏
i∈S

xi of the function l. From k = p + 1

to k = n, eliminate those monomials of degree k which are divisible by some monomials of the

function l with degree from p to k − 1. Then, a function g is obtained.

4. Finally, to obtain the Deegan-Packel power index (1), of a player i ∈ N , compute

ρi (N, v) =
1

g (1, . . . , 1)

∫ 1

0

∂g

∂xi
(t, . . . , t) dt.

Proof.

Let be (N, v) ∈ SI (N) and i ∈ N. In steps 2 and 3, those terms corresponding to winning

coalitions that are not minimal winning ones are eliminated. Then, it is clear that function g after

step 3 is

g (x1, . . . , xn) =
∑

S∈M(v)

∏

k∈S

xk.

It holds that g (1, . . . , 1) =
∑

S∈M(v)

1 = |M (v)| .
Further note that,

∫ 1

0

∂g

∂xi
(t, . . . , t) dt =

∫ 1

0

∑

S∈Mi(v)

t|S|−1dt =
∑

S∈Mi(v)

1
|S| ,

which completes the proof.

4.2 The multilinear extension of the Public Good Index

The next procedure gives a method to compute the Public Good Index.

Theorem 6 Let (N, v) be a simple game. The Public Good Index for every player i ∈ N can be

computed by the following procedure:

1, 2, and 3. Same as in Theorem 5.

4. Obtain functions gi, i = 1, . . . , n follows:

gi (xi) = g (1, . . . , 1, xi, 1, . . . 1) , for 0 ≤ xi ≤ 1.

5. Finally, compute the derivatives, g′i(xi), of the above functions to obtain the Public Good

Index (2), for player i ∈ N , as follows

δi (N, v) =
g′i(xi)∑

j∈N g′j(xj)
,

with 0 ≤ xj ≤ 1 for every j ∈ N .

Proof. Let be (N, v) ∈ SI (N) . In a similar way to Theorem 5, the function g after step 3 is

g (x1, . . . , xn) =
∑

S∈M(v)

∏

k∈S

xk.

13



Moreover, the functions gi for every i ∈ N , after Step 4 are:

gi (xi) = |Mi (v)|xi + ki, where ki ∈ R.

Taking into account that

g′i(xi) = |Mi (v)| ,

the result is established.

4.3 The multilinear extension of the Johnston index

Next, a procedure to obtain the Johnston power index of a simple game is described. In this case,

the advantage of this approach resides in the fact that the set of quasi-minimal winning coalitions

and its corresponding critical coalitions are not known a priori, and thus, expression (3) could not

be used to obtain the index.

Theorem 7 Let (N, v) be a simple game. The Johnston power index for every player i ∈ N can

be computed by the following procedure:

1 and 2. The same as in Theorem 5.

3. Consider p as the minimum degree of the monomials
∏

i∈S xi in the function l. Take r = 1.

3.1. If p + r > n, denote the relevant function by g and go to step 4.

3.2. Eliminate all the monomials of degree p + r in l if all its divisors with p + r − 1 factors

and degree p + r − 1 are in l.

3.3. Add (with a positive sign) all the monomials of degree p + r and p + r factors in case that

they are not in l and only a strict subset of its divisors with p, p + 1, · · · , p + r − 1 factors and

degree p, p + 1, · · · , p + r − 1, respectively, are in l.

3.4. If there are no monomials of degree p + r in this function, go to step 3.6.

3.5. Replace each monomial of degree p + r by the highest common factor of the set of its

divisors in l whose degree is between p and p + r − 1.

3.6. Take r = r + 1 and go to step 3.1.
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4. Finally, to obtain the Johnston power index (3), of a player i ∈ N , compute

γi(N, v) =
1

g(1, . . . , 1)

∫ 1

0

∂g

∂xi
(t, . . . , t)dt.

Proof.

Consider (N, v) ∈ SI(N) and i ∈ N . In steps 2 and 3, the terms corresponding to the critical

coalitions of all quasi-minimal winning coalitions are obtained. Then, it is clear that function g

after step 3 is

g(x1, x2, . . . , xn) =
∑

S∈G(v)

∏

k∈χ(S)

xk.

Moreover, g(1, . . . , 1) =
∑

S∈G(v)

1 =| G(v) |.

Taking into account that
∫ 1

0

∂g

∂xi
(t, . . . , t)dt =

∫ 1

0

∑

S∈Gi(v)

t|χ(S)|−1dt =
∑

S∈Gi(v)

1
| χ(S) | ,

the result is established.

5 Examples

In this section, the procedures derived above are applied to two examples. In the first one, the

Basque Country Parliament, how our algorithms work is demonstrated. In the second one, the

Victoria proposal, the multilinear extension of the corresponding game is obtained, taking into

account that it is a composition of several games. The example allows to apply the procedures

presented in the previous section and obtain the Deegan-Packel index, the Public Good Index,

and the Johnston index of the game.

5.1 Example 1. The Basque Country Parliament

The Basque Country is one of the seventeen Spanish autonomous communities. The Basque

Country Parliament is made up of 75 members. After the elections of April, 2005, the Parliament

was composed of 29 members of the moderate regional party PNV (party 1), 18 members of the

socialist party PSE-EE (party 2), 15 members of the conservative party PP (party 3), 3 members

of the communist party IU-EB (party 5), and 9 and 1 members, respectively, of the left-wing

regionalist parties PCTV (party 4), and ARALAR (party 6). The normalized vector of weights is
(

29
75 , 18

75 , 15
75 , 9

75 , 3
75 , 1

75

)
and the quota is d = 38.

This parliament can be analyzed as a simple game. The winning coalitions are obtained taking

into account the number of members of the different parties in the parliament.
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It is easy to show that this simple game can be written in terms of unanimity games (defined

in the subsection 2.2), taking S1 = {1} and S2 = {2, 3, 4}:

v =
∑

R⊆S2
|R|=1

uS1∪R −
∑

R⊆S2
|R|=2

uS1∪R + uS2 .

Applying Lemma 4, the multilinear extension of this game is:

h (x1, x2, x3, x4, x5, x6) = x1x2 + x1x3 + x1x4 − x1x2x3 − x1x2x4 − x1x3x4 + x2x3x4.

Eliminating those monomials with coefficients different from 1, the function l is obtained:

l (x1, x2, x3, x4, x5, x6) = x1x2 + x1x3 + x1x4 + x2x3x4.

• The Deegan-Packel index.

Once the function l is obtained, by step 3 those monomials that can be divided by any other

monomial of l are eliminated, obtaining the function g

g (x1, x2, x3, x4, x5, x6) = x1x2 + x1x3 + x1x4 + x2x3x4.

Finally, to compute Deegan-Packel index, apply step 4, to calculate:

g (1, 1, 1, 1, 1, 1) = 4,

∫ 1

0

∂g

∂x1
(t, . . . , t) dt =

∫ 1

0

3tdt =
3
2
,

∫ 1

0

∂g

∂xi
(t, . . . , t) dt =

5
6
, for all i ∈ {2, 3, 4}, and

∫ 1

0

∂g

∂xi
(t, . . . , t) dt = 0, for all i ∈ {5, 6}.

The Deegan-Packel index is ρ (N, v) =
(

9
24

,
5
24

,
5
24

,
5
24

, 0, 0
)

.

• The Public Good Index.

As step 3 is similar for Deegan-Packel index and Public Good Index, taking into account the

function g obtained previously and, due to the step 4, get:

g1(x1) = 3x1 + 1, g2(x2) = 2x2 + 2, g3(x3) = 2x3 + 2, g4(x4) = 2x4 + 2,

g5(x5) = 4, and g6(x6) = 4.

And finally, by step 5, the Public Good Index is:

δ (N, v) =
(

3
9
,
2
9
,
2
9
,
2
9
, 0, 0

)
.

• The Johnston index.
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Consider the function l obtained in step 2, when the Deegan-Packel power index was computed.

Step 3 has several stages:

First stage. Consider the monomials with degree 2 of the function l

x1x2 + x1x3 + x1x4.

Second stage. Using the monomials, add all the possible monomials of degree 3 and 3 factors

such that only a strict subset of its divisors with 2 factors and degree 2 are in l. Then, the next

function is obtained:

x1x2 + x1x3 + x1x4 + x2x3x4 + x1x2x3 + x1x2x4+

x1x2x5 + x1x2x6 + x1x3x4 + x1x3x5 + x1x3x6 + x1x4x5 + x1x4x6

and, replacing the monomials of degree 3 and 3 factors by the highest common factor of the set

of its divisors in l whose degree is 2, the next result is obtained:

3x1 + 3x1x2 + 3x1x3 + 3x1x4 + x2x3x4.

Third stage. By the same procedure for the monomials of degree 4, get

9x1 + 4x1x2 + 4x1x3 + 4x1x4 + 3x2x3x4.

Fourth stage. Taking into account the monomials of degree 5, the next result is obtained:

12x1 + 4x1x2 + 4x1x3 + 4x1x4 + 4x2x3x4.

Stop, obtaining that

g(x1, x2, x3, x4, x5, x6) = 12x1 + 4x1x2 + 4x1x3 + 4x1x4 + 4x2x3x4.

Therefore, by step 4,

g(1, 1, 1, 1, 1, 1) = 28,
∫ 1

0

∂g

∂x1
(t, . . . , t)dt =

∫ 1

0

(12 + 12t)dt = 18,

∫ 1

0

∂g

∂xi
(t, . . . , t)dt =

∫ 1

0

(4t + 4t2)dt =
10
3

for all i ∈ {2, 3, 4},

and ∫ 1

0

∂g

∂xi
(t, . . . , t)dt = 0 for all i ∈ {5, 6}.

Then, the Johnston index is

γ(N, v) =
(

27
42

,
5
42

,
5
42

,
5
42

, 0, 0
)

.
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The three indices distinguish three types of players. The Johnston index gives the greatest power

to the powerful player PNV because many quasi-minimal winning coalitions S containing PNV

have this player as the sole critical player of S. The differences between PNV and the other non-

null players are smaller for the Public Good Index than for the Deegan-Packel index. The reason is

that the Public Good Index does not take the cardinality of the set of minimal winning coalitions

into account as a comparison of the corresponding mergeability properties demonstrates.

5.2 Example 2. The Victoria Proposal

To ratify the amendments to the Canadian Constitution, in accordance with the suggestions made

by the Victoria Proposal, it is necessary that they are approved by all of the following:

1. Ontario and Quebec,

2. Two of the four Maritime Provinces,

3. Either British Columbia, and one of the Prairie Provinces, or all three of the Prairie

Provinces.

This situation can be analyzed as a simple game v. Moreover, there exists a natural partition

of the Provinces into three subsets P1, P2, and P3, where P1 = {1, 2} = {Ontario,Quebec},
P2 = {3, 4, 5, 6}

= {New Brunswick, Nova Scotia, Newfoundland, Prince Edward Island}

are the Maritime Provinces, and P3 = {7, 8, 9, 10}

= {British Columbia, Alberta, Saskatchewan, Manitoba}

contains the Prairie Provinces.

The game v can be expressed as a composition of games:

v = u[v1, v2, v3],

where v1 is a two-player game in which {1, 2} is the only winning coalition, v2 is a four-player game

in which any two-player coalition (or larger) wins, v3 is a four-player game in which a coalition

S wins if (a) S has two players, and 1 ∈ S or (b) S has three or four players. Finally, u is a

three-person simple game in which only the three-person coalition wins. For more details about

this game and composition of games, see Owen (1995).

Taking into account Lemma 4, the multilinear extension of u, is f(y1, y2, y3) = y1y2y3. For

v1, v2 and v3, the corresponding multilinear extensions are g1(x1, x2) = x1x2, g2(x3, x4, x5, x6) =

x3x4 + x3x5 + x3x6 +x4x5 + x4x6 + x5x6− 2x3x4x5− 2x3x4x6− 2x3x5x6− 2x4x5x6 +3x3x4x5x6,
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and g3(x7, x8, x9, x10) = x7x8 +x7x9 +x7x10 +x8x9x10−x7x8x9−x7x8x10−x7x9x10, respectively.

As h, the multilinear extension of v is:

h(x1, . . . , x10) = f(g1(x1, x2), g2(x3, x4, x5, x6), g3(x7, x8, x9, x10)) =

g1(x1, x2)× g2(x3, x4, x5, x6)× g3(x7, x8, x9, x10).

Finally, applying Theorems 5, 6, and 7 as in Example 1 above, the Deegan-Packel (D-P), Public

Good Index (PGI) and Johnston (J) indices are obtained. They are showed, jointly with Shapley-

Shubik (S-S) and Banzhaf (B) indices, in Table 2. Taking into account that all these indices are

symmetric, only the results for representatives of the four types of players are presented.

It is interesting to note that the Banzhaf, Deegan-Packel, and Johnston indices assign greater

power to the Maritime Provinces than to the Prairie Provinces. By contrast, the Shapley-Shubik

index favored the Prairie Provinces more than the Maritimes. The Public Good Index assigns the

same power to the Prairie Provinces and to the Maritime Provinces, as the number of minimal

winning coalitions containing a Praire Province or a Maritime Province is the same.
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Table 2. Power indices for the Victoria Proposal

Provinces S-S B D-P PGI J

Ontario and Quebec 0.3155 0.1718 0.1607 0.1600 0.2410

Maritime Provinces 0.0298 0.0469 0.0803 0.0800 0.0509

British Columbia 0.1250 0.1289 0.1250 0.1200 0.1744

Prairie Provinces 0.0417 0.0430 0.0773 0.0800 0.0466

6 Conclusions

The paper provides (Section 3.4) a new axiomatic characterization of the Public Good Index. It

refers to a specific property of monotonicity that is similar to the monotonicity property proposed

to characterize the Deegan-Packel index in Lorenzo-Freire et al. (2007). The differences between

the two properties reflect the differences of the alternative axioms of mergeability which the two

indices satisfy.

A monotonicity property for the Johnston index is defined. It would be of interest, to find

a characterization for this measure which is identical, or at least similar, to the characterization

of the Public Good Index or the Deegan-Packel index. The corresponding axiomatization of the

Johnston index remains to be worked out.

In Section 4, algorithms to compute the three power indices further analyzed in the paper using

the multilinear extension of the game are given. This tool has been widely used in the literature.

In this paper, however, it has been applied to power indices which are not probabilistic values.

The computations presented in Section 5, i.e., applications to the Basque Country Parliament

and the Victoria Proposal, illustrate further implications of the theoretical results expressed in

Theorems 5, 6, and 7 and their capacity to support empirical research.
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