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Abstract

A compact axiomatic characterization of the modified Banzhaf value for games
with a coalition structure (Banzhaf–Owen value, for short) is provided. The
axiomatic system used here can be compared with parallel axiomatizations of
other coalitional values such as the Owen value or the Alonso–Fiestras value,
thus giving arguments to defend the use of one of them that will depend on the
context where they are to be applied.
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1 Introduction

The assessment of the strategic position of each player in any game is a main objective
of the cooperative game theory, as it can be applied to e.g. sharing costs or profits
in economic problems or measuring the power of each agent in a collective decision–
making system. The Shapley value ϕ is the best known concept in this respect, and
its axiomatic presentation (Shapley [38], also in Roth [37]) introduced a new, elegant
style in game theory and opened a fruitful research line.

As a sort of reaction to the application of ϕ to simple games as a power in-
dex, suggested by Shapley and Shubik [39], and following a more classical procedure,
Banzhaf [12] introduced a different index of power (essentially equivalent to those
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proposed by Penrose [36] and Coleman [17]) that gave rise to a Banzhaf value β on
all cooperative games first defined by Owen [30]. Many axiomatic characterizations
of one, the other or both values may be found in the literature (see, e.g., Owen [32],
Dubey and Shapley [18], Young [45], Lehrer [26], Straffin [40], Amer and Carreras [7],
Nowak [28] or Laruelle and Valenciano [24]). A most interesting one was stated by
Feltkamp [20], who gave parallel characterizations of the Shapley and Banzhaf values
that enhance the similarities and differences between them. Indeed, only one property
distinguishes these values: efficiency for the Shapley value versus total power for the
Banzhaf value.

Forming coalitions is a most natural behavior in cooperative games, and the eval-
uation of the consequences that derive from this action is also of great interest to
game theorists. Games with a coalition structure were first considered by Aumann
and Drèze [11], who extended the Shapley value to this new framework in such a
manner that the game really splits into subgames played by the unions isolatedly
from each other, and every player receives the payoff allocated to him by the Shapley
value in the subgame he is playing within his union. A second approach was used
by Owen [31] (also in Owen [34]), when introducing and axiomatically characterizing
his coalitional value Φ (Owen value). In this case, the unions play a quotient game
among themselves, and each one receives a payoff which, in turn, is shared among its
players in an internal game. Both payoffs, in the quotient game for unions and within
each union for its players, are given by the Shapley value. In addition to the initial
one, many other axiomatic characterizations of Φ can be found in the literature (Hart
and Kurz [23], Winter [44], Amer and Carreras [8] and [9], Vázquez–Brage et al. [41],
Hamiache [22] or Albizuri [2] among others).

By applying a similar procedure to the Banzhaf value, Owen [33] obtained a second
coalitional value, the modified Banzhaf value Ψ for games with a coalition structure or
Banzhaf–Owen value. Here, the payoffs at both levels, that of the unions in the quo-
tient game and that of the players within each union, are given by the Banzhaf value.
In this case, no axiomatization was initially provided. A first axiomatic characteri-
zation was reached by Albizuri [1], but only on the restricted domain of (monotonic)
simple games. Amer et al. [10] were the first to establish a characterization of Ψ
on the full domain of all cooperative games. However, as they said in Remark 3.3(b)
under a suggestion of a referee of their article, their characterization is far from giving
rise to an almost common axiomatization of both Φ and Ψ similar to Feltkamp’s one
for ϕ and β. (For a wide generalization of Owen’s procedure to coalitional semivalues,
which encompasses the four coalitional values that will be considered here, the inter-
ested reader is referred to Albizuri and Zarzuelo [3]. For a way of extending to games
with coalition structure the notion of sharing function, please see van den Brink and
van der Laan [13].)

Our aim here is to provide a new axiomatic characterization for the Banzhaf–Owen
value Ψ that is able to be compared with some of the existing ones for Φ and, more
precisely, with the characterization reached by Vázquez–Brage et al. [41].

The organization of the paper is then as follows. In Section 2, a minimum of
preliminaries is provided. In Section 3 we give the axiomatic characterization of the
Banzhaf–Owen value. Section 4 is devoted to comparing it with parallel axiomatiza-
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tions of Φ, of Alonso and Fiestras’ symmetric coalitional Banzhaf value π and even
of a sort of “counterpart” value µ introduced by Amer et al. [10] (both to be defined
below in due time) and to discussing by the way our results.

2 Preliminaries

Although the reader is assumed to be generally familiar with the cooperative game
theory, we recall here some basic notions.

2.1 Games and values

A finite transferable utility cooperative game (from now on, simply a game) is a pair
(N, v) defined by a finite set of players N , usually N = {1, 2, . . . , n}, and a function
v : 2N → R, that assigns to each coalition S ⊆ N a real number v(S) and satisfies
v(∅) = 0. In the sequel, GN will denote the family of all games on a given N and G
the family of all games.

A player i ∈ N is a dummy in game (N, v) if v(S ∪ {i}) = v(S) + v({i}) for
all S ⊆ N\{i}, that is, if all his marginal contributions equal v({i}). Two players
i, j ∈ N are symmetric in game (N, v) if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N\{i, j},
i.e., if their marginal contributions to each coalition coincide.

By a value we will mean a map f that assigns to every game (N, v) ∈ G a vector
f(N, v) ∈ R

N with components fi(N, v) for all i ∈ N .

Definition 2.1 (Owen [30]) The Banzhaf value β is the value defined by

βi(N, v) =
1

2n−1

∑

S⊆N\{i}

[

v(S ∪{i})−v(S)
]

for any i ∈ N and any (N, v) ∈ G. (1)

2.2 Games with a coalition structure

Let us consider a finite set, say, N = {1, 2, . . . , n}. We will denote by P (N) the set
of all partitions of N . Each P ∈ P (N), of the form P = {P1, P2, . . . , Pm}, is called a
coalition structure or system of unions on N . The so–called trivial coalition structures
are P n = {{1}, {2}, . . . , {n}}, where each union is a singleton, and P N = {N}, where
the grand coalition forms. Given i ∈ N , P (i) will denote the subfamily of coalition
structures P ∈ P (N) such that {i} ∈ P . If i ∈ Pk ∈ P , P−i will denote the partition
obtained from P when player i leaves union Pk and becomes isolated, i.e.,

P−i = {Ph ∈ P : h 6= k} ∪ {Pk\{i}, {i}}.

A cooperative game with a coalition structure is a triple (N, v, P ) where (N, v) ∈ G
and P ∈ P (N). The set of all cooperative games with a coalition structure will be
denoted by Gcs, and by Gcs

N the subset where N is the player set.
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If (N, v, P ) ∈ Gcs and P = {P1, P2, . . . , Pm}, the quotient game (M, vP ) is the
cooperative game played by the unions, or, rather, by the set M = {1, 2, . . . , m} of
their representatives, as follows:

vP (R) = v(
⋃

r∈R

Pr) for all R ⊆ M. (2)

Notice that (M, vP ) is nothing but (N, v) whenever P = P n. A not completely trivial
case is the following.

Example 2.2 Let (N, v) ∈ G be given and i, j ∈ N be distinct players. Let P i,j

be the coalition structure of N where just i and j form a union while the remaining
players stay all isolated. In this case, we can slightly alter the notations, take ij as a
new player representing both i and j and each other player k as representing himself,

thus considering N i,j = {ij, 1, 2, . . . ,
∧
i , . . . ,

∧
j, . . . , n} (where

∧
i and

∧
j mean that i and

j have been removed) as quotient player set and, as quotient game, the game vi,j

defined by

vi,j(S) = v(S) and vi,j(S ∪ {ij}) = v(S ∪ {i, j}) for any S ⊆ N\{i, j}.

As we see, this game, considered by Lehrer [26] and Nowak [28] in their axiomati-
zations of the Banzhaf value and called “reduced game” or “amalgamation of i and
j”, is nothing but the easiest non–trivial case of quotient game. Its generalization
to the case where, instead of {i, j}, some coalition S ⊆ N with |S| ≥ 2 forms is
straightforward.

By a coalitional value we will mean a map g that assigns to every game with a
coalition structure (N, v, P ) a vector g(N, v, P ) ∈ R

N with components gi(N, v, P )
for each i ∈ N .

Definition 2.3 (Owen [33]) The Banzhaf–Owen value Ψ is the coalitional value de-
fined by

Ψi(N, v, P ) =
∑

R⊆M\{k}

∑

T⊆Pk\{i}

1

2m−1

1

2pk−1

[

v(Q ∪ T ∪ {i}) − v(Q ∪ T )
]

(3)

for all i ∈ N and all (N, v, P ) ∈ Gcs, where Pk ∈ P is the union such that i ∈ Pk,
m = |M |, pk = |Pk| and Q =

⋃

r∈R

Pr .

Definition 2.4 Given a value f on G, a coalitional value g on Gcs is a coalitional
f–value if

g(N, v, P n) = f(N, v) for all (N, v) ∈ G. (4)
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3 An axiomatic approach

We shall consider the following properties for a coalitional value g on Gcs.

A1. (2–Efficiency) For all (N, v) ∈ G, and any pair of distinct players i, j ∈ N ,

gi(N, v, P n) + gj(N, v, P n) = gij(N
i,j , vi,j , P n−1).

A2. (Dummy player) If i ∈ N is a dummy in (N, v) then gi(N, v, P n) = v({i}).

A3. (Symmetry) If i, j ∈ N are symmetric players in (N, v) then gi(N, v, P n) =
gj(N, v, P n).

A4. (Equal marginal contributions) If (N, v) and (N, w) are games with a common
player set N , and some player i ∈ N satisfies v(S∪{i})−v(S) = w(S∪{i})−w(S)
for all S ⊆ N\{i}, then gi(N, v, P n) = gi(N, w, P n).

A5. (Indifference within unions) If (N, v, P ) ∈ Gcs, Pk ∈ P , and i, j ∈ Pk are distinct
players, then

gi(N, v, P ) = gi(N, v, P−j).

A6. (Quotient game property for one–player unions) If (N, v, P ) ∈ Gcs and P ∈ P (i)
for some i ∈ N , then

gi(N, v, P ) = gk(M, vP , P m),

where Pk = {i}.

Axioms A2 and A3 (also called equal treatment property) are standard in the
literature. Axiom A1 was introduced by Lehrer [26] in a slightly different form (as
an inequality), although it was soon discovered (see, e.g., Carreras and Magaña [14])
that the equality holds, as reported also by Nowak [28], while A4 was introduced
by Young [45]. We refer to these sources, and also to Haller [21] and Malawski [27],
for discussions about the meaning and scope of these properties. The discussion on
axioms A5 and A6 will be done in the next section.

In the sequel, A0 will mean the conjunction of A1–A4. This will make our state-
ments simpler. We will first establish a close relationship between the coalitional
values satisfying A0 and the Banzhaf value. More precisely:

Proposition 3.1 A coalitional value g satisfies A0 if, and only if, it is a coalitional
Banzhaf value, i.e.

gi(N, v, P n) = βi(N, v) for all i ∈ N and all (N, v) ∈ G. (5)

Proof. The proof follows the same guidelines as Nowak’s [28] (non–trivial) proof.
The only difference between Nowak’s statement and ours is that he is talking about
values, whereas we are referring to coalitional values, although the connection is given
by the appearance of the trivial coalition structure P n in our axiom set A1–A4. �
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Remark 3.2 The interest of this first result lies on the existence of an analogous
result for the Shapley value obtained by Young [45] and also cited by Nowak [28] (the
difference will be explained in the next section). This is a sort of starting point for
our aim to “put in parallel” the Owen value Φ (as a coalitional Shapley value) and
the Banzhaf–Owen value Ψ (a coalitional Banzhaf value in the above sense).

Now, we are ready to state and prove our main result.

Theorem 3.3 (Existence and uniqueness) A coalitional value g satisfies A0, A5 and
A6 if, and only if, it is the Banzhaf–Owen coalitional value Ψ. In other words, Ψ is
the unique coalitional Banzhaf value that satisfies A5 and A6.

Proof. (a) (Existence) 1. The Banzhaf–Owen coalitional value Ψ satisfies A0, that is,
A1–A4. According to Proposition 3.1, it suffices to check equation (5). Let (N, v) ∈ G
and i ∈ N . As we will deal with P = P n, we have M = N , Pk = {i} so k = i and
|pk| = 1, T = ∅ and Q = R when applying formula (3). Thus

Ψi(N, v, P ) =
∑

R⊆M\{k}

∑

T⊆Pk\{i}

1

2m−1

1

2pk−1

[

v(Q ∪ T ∪ {i}) − v(Q ∪ T )
]

reduces to

Ψi(N, v, P n) =
∑

R⊆N\{i}

1

2n−1

[

v(R ∪ {i}) − v(R)
]

= βi(N, v).

2. The Banzhaf–Owen value Ψ satisfies A5, the property of indifference whitin unions.
Let (N, v, P ) ∈ Gcs, Pk ∈ P , and i, j ∈ Pk be distinct players. Let

P−j = {P ′
1, P

′
2, . . . , P

′
m+1},

where P ′
h = Ph for every h ∈ M\{k}, P ′

k = Pk\{j} and P ′
m+1 = {j}, and let

M ′ = {1, 2, . . . , m, m + 1}. Then, m′ = m + 1 and p′k = pk − 1 so that

Ψi(N, v, P−j) =
∑

R⊆M ′\{k}

∑

T⊆P ′

k
\{i}

1

2m′−1

1

2p′

k
−1

[

v(Q ∪ T ∪ {i}) − v(Q ∪ T )
]

reduces, by separating the cases m+1 ∈ R and m+1 /∈ R and grouping terms again,
to

Ψi(N, v, P−j) =
∑

R⊆M\{k}

∑

T⊆Pk\{i}

1

2m−1

1

2pk−1

[

v(Q∪T∪{i})−v(Q∪T )
]

= Ψi(N, v, P ).

3. The Banzhaf–Owen value Ψ satisfies A6, the quotient game property for one–player
unions. Let (N, v, P ) ∈ Gcs be such that P ∈ P (i), and let Pk = {i}. Then |pk| = 1,
so that T = ∅ and therefore

Ψi(N, v, P ) =
∑

R⊆M\{k}

∑

T⊆Pk\{i}

1

2m−1

1

2pk−1

[

v(Q ∪ T ∪ {i}) − v(Q ∪ T )
]

6



reduces to

Ψi(N, v, P ) =
∑

R⊆M\{k}

1

2m−1

[

v(Q ∪ {i}) − v(Q)
]

=
∑

R⊆M\{k}

1

2m−1

[

vP (R ∪ {k}) − vP (R)
]

= βk(M, vP ) = Ψi(M, vP , P m).

(b) (Uniqueness) Let us assume for a while that two coalitional Banzhaf values
g1 and g2 satisfy indifference within unions (A5) and the quotient game property for
one–player unions (A6). Then we can find a game (N, v) and a coalition structure P
on N with the maximum number of unions such that g1(N, v, P ) 6= g2(N, v, P ), i.e.,
g1

i (N, v, P ) 6= g2
i (N, v, P ) for some i ∈ N .

As g1 and g2 are coalitional Banzhaf values, it follows that m < n. Let us take
Pk ∈ P such that i ∈ Pk. Two possible cases arise:

• |Pk | = 1. Then, Pk = {i}. By A6 we have

g1
i (N, v, P ) = g1

k(M, vP , P m) and g2
i (N, v, P ) = g2

k(M, vP , P m).

Since g1 and g2 are coalitional Banzhaf values

g1
k(M, vP , P m) = βk(M, vP ) = g2

k(M, vP , P m).

Therefore, g1
i (N, v, P ) = g2

i (N, v, P ), a contradiction.

• |Pk | > 1. Then, there is some j ∈ Pk such that j 6= i. By A5,

g1
i (N, v, P ) = g1

i (N, v, P−j) and g2
i (N, v, P ) = g2

i (N, v, P−j).

By the maximality of partition P it follows that

g1
i (N, v, P−j) = g2

i (N, v, P−j),

and this leads to g1
i (N, v, P ) = g2

i (N, v, P ), a contradiction again. �

Remark 3.4 (Independence of the axiomatic system) By considering A0 (conjunction
of A1–A4, that is, equivalent to being a coalitional Banzhaf value) as a sole property,
the axiom system {A0,A5,A6} is independent. Indeed:

(i) The coalitional value g, given by g(N, v, P ) = β(N, v) for all (N, v, P ) ∈ Gcs, is
a coalitional Banzhaf value (satisfies A0) that satisfies A5 but not A6.

(ii) The symmetric coalitional Banzhaf value π, introduced by Alonso–Meijide and
Fiestras–Janeiro [4] and defined, with the same notation as in case of Ψ for
equation (3) and adding t = |T |, by

πi(N, v, P ) =
∑

R⊆M\{k}

∑

T⊆Pk\{i}

1

2m−1

t!(pk − t − 1)!

pk!

[

v(Q∪T ∪{i})−v(Q∪T )
]

,

(6)
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is a coalitional Banzhaf value that satisfies A6 but not A5 (for details, see
Alonso–Meijide and Fiestras–Janeiro [4]). This coalitional value will be consid-
ered in detail in the next section.

(iii) Finally, given a ∈ R, the coalitional value g, given by g(N, v, P ) = a for all
(N, v, P ) ∈ Gcs, satisfies A5 and A6 but is not a coalitional Banzhaf value.

4 Discussion and conclusions

This section is devoted to the analysis and criticism of the results obtained in Section
3.

4.1 On the axioms

Some comments are in order concerning the properties we have used as axioms. First,
it is worthy of mention that property A0 (i.e., axioms A1–A4), might be replaced
with any other system of axioms that characterizes the Banzhaf value by adding
the mention of the trivial coalition structure as we did before. In particular, A1 is
equivalent, in presence of A2–A4, to the so–called total power property (with regard
to P n, of course), which states

∑

i∈N

gi(N, v, P n) =
1

2m−1

∑

S⊆N

∑

i/∈S

[

v(S ∪ {i}) − v(S)
]

for all (N, v) ∈ G,

and can be traced back (omitting P n) at least to Owen [32] and Dubey and Shap-
ley [18]. Moreover, note that no use has been made of additivity and neither of strong
monotonicity (Young [45]) in our system, although it should be noticed that A4 is
what Young calls independence, a property weaker than strong monotonicity. Not
only ϕ and β, but all semivalues (see Weber [42], Dubey et al. [19] or Weber [43] for
this notion) satisfy A2–A4 (always omitting P n) and an ad hoc modification of the
total power property for each one of them.

A5 (indifference within unions) describes the invariance of the allocations given by
a coalitional value to the players of any union in front of the existence of self–isolating
players in that union. This property is stronger than the “balanced contributions
property” that will be considered below.

Finally, A6 (quotient game property for one–player unions) states that, using the
coalitional value in the original game with a coalition structure, any isolated player
gets the same payoff as the union he forms if we use the same coalitional value in
the quotient game with the trivial singleton structure. As we will see, this property,
weaker than the “quotient game property” described below, could also be called 1–
quotient game property.

4.2 Other properties, other values

Let us now consider, for comparative purposes, a new series of properties for a coali-
tional value that have been used as axioms in the literature. We recall that Pk, Ph ∈ P
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are symmetric unions in (N, v, P ) if k and h are symmetric players in the quotient
game (M, vP ).

B1. (Efficiency) For all (N, v) ∈ G

∑

i∈N

gi(N, v, P n) = v(N).

B2. Equal to A2.

B3. Equal to A3.

B4. Equal to A4.

B0. Conjunction of B1–B4.

B5. (Balanced contributions within unions) For all (N, v, P ) ∈ Gcs and i, j ∈ Pk ∈ P

gi(N, v, P ) − gi(N, v, P−j) = gj(N, v, P ) − gj(N, v, P−i).

B6. (Quotient game property) For all (N, v, P ) ∈ Gcs and all Pk ∈ P

∑

i∈Pk

gi(N, v, P ) = gk(M, vP , P m).

B7. (Symmetry in the quotient game) If Pk and Ph are symmetric unions in (N, v, P ),
then

∑

i∈Pk

gi(N, v, P ) =
∑

j∈Ph

gj(N, v, P ).

As was said in Subsection 4.1, A5 is stronger than B5, whereas A6 is weaker than
B6. Both relations are clear.

Now, we put together in Table 1 all these properties and their counterparts A0–
A6, and specify which of them are satisfied by each one of the four coalitional values
we are considering in this paper, namely, Φ (Owen value), Ψ (Banzhaf–Owen value),
π (symmetric coalitional Banzhaf value or Alonso–Fiestras value, for short), and µ (a
“counterpart” of π introduced as a counterexample by Amer et al. [10] which simply
follows Owen’s [31] and [33] two–step procedure but applies the Shapley value in the
quotient game and the Banzhaf value within unions). Note therefore that these four
values cover all the variations of Owen’s scheme using the Shapley and Banzhaf values.

An OK (resp., empty) entry in the four final columns means that the corresponding
coalitional value satisfies (resp., fails to satisfy) the corresponding property. The
verification of the positive (OK) entries and suitable counterexamples in case of failure
can be easily found in the literature concerning these four values already mentioned
here. It is worthy of mention that property A1, 2–efficiency, is specific of Ψ. The total
power property for this value differs from the corresponding one for π (see Alonso–
Meijide and Fiestras–Janeiro [4]), although they share a common spirit.
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The last row—not essential to our discussion, but nice enough to be included
here—refers to the possibility to compute a value by using, as in the well known cases
of the Shapley value (Owen [29]) and the Banzhaf value (Owen [30]), the multilinear
extension of the game where it is applied. The references are Owen and Winter [35]
for Φ, Carreras and Magaña [14] (see also Carreras and Magaña [15]) for Ψ, and
Alonso–Meijide et al. [5] for π and µ. The multilinear extension, introduced by
Owen [29], becomes therefore a very interesting tool, for both theory and practice, in
the framework of coalitional values.

Table 1. Properties and coalitional values

symbol property Φ Ψ π µ

A0 coalitional β–value (Banzhaf) OK OK

B0 coalitional ϕ–value (Shapley) OK OK

A1 2–efficiency / total power OK OK

B1 efficiency OK OK

A2 = B2 dummy player OK OK OK OK

A3 = B3 symmetry OK OK OK OK

A4 = B4 equal marginal contributions OK OK OK OK

A5 indifference within unions OK

B5 balanced contributions within unions OK OK OK OK

A6 1–quotient game OK OK OK OK

B6 quotient game OK OK

B7 symmetry in the quotient game OK OK

MLE computation by multilinear extensions OK OK OK OK

For a moment, we will disregard value µ and focus on the remaining values Φ, Ψ
and π. The important point is that we have, then, parallel (i.e., very close) axiomatic
characterizations of these coalitional values. We state them.

Theorem 4.1 (Vázquez–Brage et al. [41]) A coalitional value satisfies B0, B5 and
B6 if, and only if, it is the Owen value Φ. �

Theorem 4.2 (Theorem 3.3 in this paper) A coalitional value satisfies A0, A5 and
A6 if, and only if, it is the Banzhaf–Owen value Ψ. �

Theorem 4.3 (Alonso–Meijide and Fiestras–Janeiro [4]) A coalitional value satisfies
A0, B5 and B6 if, and only if, it is the symmetric coalitional Banzhaf value π. �

As is seen, the only basic difference between Φ and π lies in the fact that the
former is a coalitional ϕ–value whereas the latter is a coalitional β–value. Instead,
the differences between Φ and Ψ arise in axioms A0/B0, A5/B5 and A6/B6, the latter
two pairs being linked by an implication relationship, while the differences between π
and Ψ are limited to A5/B5 and A6/B6. We feel that this is a complete generalization
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of Feltkamp’s [20] axiomatic characterizations of ϕ and β. It also enhances the role
of π as an “intermediate” value between Φ and Ψ, and we wish to mention here
that Theorem 4.3 extends in a natural way to all symmetric coalitional binomial
semivalues πp for p ∈ [0, 1] (introduced by Carreras and Puente [16]), as is shown in
Alonso–Meijide et al. [6].

It has not been an easy task making changes on B5 and B6 in order to get,
respectively, really simple and sharp axioms A5 and A6, those that mark the essential
differences between Φ and Ψ. It has been necessary to “split hairs” accurately.

Which is the reason to have included the symmetric coalitional Banzhaf value π
in our considerations? Well, Alonso–Meijide and Fiestras–Janeiro [4] realized that Ψ
fails to satisfy two in principle interesting properties of Φ, namely B6 (quotient game
property) and B7 (symmetry in the quotient game). Then they suggested to modify
Owens’ two–step allocation scheme (common to Φ and Ψ) and use β for sharing in
the quotient game and ϕ to sharing within unions. This gave rise to π, that satisfies
B6 and B7 but differs from the Owen value Φ in satisfying A0 instead of B0. In
Subsection 4.3, we will look again at the meaning of π.

Now, we would like to refer to the work by Amer et al. [10]. Their first axiomatic
characterization of the Banzhaf–Owen value on the domain of all cooperative games
was reached by considering six properties that, for our purposes, do not need to be
stated in detail:

C1. Additivity.

C2. Dummy player property.

C3. Symmetry within unions.

C4. Many null players.

C5. Delegation neutrality.

C6. Delegation transfer.

Properties C1–C3 are standard in the literature. C4 is perhaps the most strik-
ing one. C5 and C6 refer to the so–called “delegation game”, close to Lehrer’s [26]
“reduced game” but avoiding the use of different player sets. In order to show—
partially—the independence of this axiom system, it is introduced in Remark 2.1(b)
the “fourth value” µ (a mixed coalitional value that can be now viewed as a “coun-
terpart” of π), since it satisfies all properties but C4 (see Remark 3.3(a) in Amer et
al. [10]), thus proving that this “rare” property does not follow from the remaining
ones. The problem with this axiomatic characterization is that it is far from any of the
existing ones for the Owen value Φ, as the authors recognize in their Remark 3.3(b)
following a suggestion of a referee of their article, because Φ satisfies all but property
C6 but it is hard to imagine which property—if any—would be able to replace C6
and complete a hypothetical parallel axiomatization of Φ. In our opinion, the relative
“failure”, only in this sense, of the work by Amer et al. [10] enforces still more our
result (Theorem 3.3).
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Finally, let us go back to value µ. We first introduce two more properties for a
coalitional value g:

D1. (Quotient game property for k–player unions if k > 1) If (N, v, P ) ∈ Gcs and
Pk ∈ P is such that |Pk| > 1 then

∑

i∈Pk

gi(N, v, P ) = gk(M, vP , P m).

D2. (2–Efficiency within unions) For all (N, v, P ) ∈ Gcs, any Pk ∈ P and any pair
of distinct players i, j ∈ Pk,

gi(N, v, P ) + gj(N, v, P ) = gij(N
i,j , vi,j , P ij),

where P ij is the partition that arises from P by simply collapsing i and j in a
single player ij.

Note that property D1 could in fact be written as B6/A6, and B6 = (B6/A6) ∩
A6. Furthermore, it is not difficult to see that D2 coincides with C6 (the delegation
transfer property introduced by Amer et al. [10]): the only difference is, roughly
speaking, that, in the original delegation transfer property, the delegating player
becomes a null player, whereas this player disappears in D2. Thus, B6/A6 and C6
are consistent notations for D1 and D2, respectively, so that we will use them in the
sequel.

Then, we have a fourth result concerning µ and using C6 (Theorem 4.4), whose
proof is omitted since it is similar to that of Theorem 3.3, and a new and interesting
comparative table referred to the four values (Table 2) where the splitting of B6 into
A6 and B6/A6 matters.

Theorem 4.4 A coalitional value satisfies B0, B5, A6 and C6 if, and only if, it is
the counterpart value µ. �

Table 2. New properties and coalitional values

symbol property Φ Ψ π µ

A0 coalitional β–value (Banzhaf) OK OK

B0 coalitional ϕ–value (Shapley) OK OK

B5 balanced contributions within unions OK OK OK OK

A6 1–quotient game OK OK OK OK

B6/A6 k–quotient game (k > 1) OK OK

C6 2–efficiency within unions / delegation transfer OK OK

Remark 4.5 Even a final axiomatic characterization of Ψ can be stated, once we
have considered C6. In effect: a coalitional value satisfies A0, B5, A6 and C6 if, and
only if, it is the Banzhaf–Owen value Ψ. The proof is analogous to that of 3.3.
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4.3 On the philosophy behind axiomatics

To close this section, we would like to make some comments about what is behind
this “logical game” of axiomatizations.

For any value, understood as a solution concept for cooperative conflicts, it is
always interesting at most, in both theory and practice, to have an explicit formula
and even an alternative computation procedure. This is the case of the four coali-
tional values mentioned here, Φ, Ψ, π and µ, all of which are obtained by combining
the weighting coefficients of ϕ and β in similar formulas and also by applying the
multilinear extension technique.

Also a list of properties of the value, as long as possible, is always desirable. Then,
why axiomatic systems? There are some reasons for this interest of game theorists
in getting them. First, for a mathematically elegant and pleasant spirit. Second,
because a set of basic (and assumed independent and hence minimal) properties is a
most convenient and economic tool to decide on the use of the value. Finally, such
a set allows a researcher to compare a given value with others and select the most
suitable one for the problem he or she is facing each time.

Why parallel axiomatic characterizations are especially interesting? Because they
favour the easiness when comparing different options to be chosen as the preferred
value.

Then, we feel that one should strongly prevent from being dogmatic at this point.
Probably, there is no value able to cover all situations. For example, there is no
unanimous criterion to choose among using either the Shapley value ϕ or the Banzhaf
value β as power index in all cases. We contend that pure and applied game theorists
should be flexible at most in this respect. On one hand, in both theory and practice,
one has often to handle additional information not stored in either the characteristic
function v of the game or the coalition structure when evaluating this couple. On
the other hand, only a few properties found in the literature can really be considered
absolutely compelling, i.e. almost no axiom is compelling in vacuo, but only inserted
in the framework of a given, specific cooperative conflict. Even those that appear as
the best placed in this sense might well be conditioned by the characteristics of the
problem where we pretend to use the value they define. The conclusion is that all of
us should look at axioms with an open mind and without a priori value judgements.
The history of science is full of examples of theoretical models that only after a certain
period of time have been proven to be useful in practice. Let us briefly illustrate these
considerations by means of some simple instances.

Example 4.6 (a) Assume that N is a set of workers in a given production area and
P reflects the classification of them into the firms they are working for. Assume,
besides, that g is a coalitional value that allocates to each worker his salary and to
each firm its (net) income (say, per year in both cases). In this context, axiom B5
(balanced contributions within unions) is too weak since here it seems more suitable
to assume the stronger hypothesis that the salary of a worker will not change if a
partner leaves the firm, and this is precisely axiom A5 (indifference within unions).
Furthermore, axiom B6 (quotient game property) is neither compelling because the
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sum of salaries of the workers of a firm needs not coincide with the net income of
the firm. This seems too strong. However, if a worker creates and holds his own
firm alone, it is very reasonable that his salary coincides with the net income of his
firm, and this is precisely the weaker axiom A6 (quotient game property for 1–player
unions). Thus, we have in mind the Banzhaf–Owen value Ψ.

(b) Now, assume that political parties are the agents in a parliamentary context
and the coalition structures reflect the coalition formation. Assume, moreover, that
g is a coalitional value that measures, in some sense, the “power” of both parties and
coalitions. In this case, A5 (indifference within unions) might not be a reasonable
property, but not necessarily should be automatically replaced with B5 (balanced
contributions within unions): maybe the effect on a party of the desertion of a coali-
tion partner is not the same as the effect when the roles are interchanged. Also B6
(quotient game property) may be not completely convincing, since the power concept
at the coalition level might well be different from power at the party level, and hence
the sum of the power indices of the colligated parties might differ from the power
of their union in the quotient game—at least, it is not completely clear why they
should coincide. Instead, it seems much more reasonable that this coincidence holds
in the case of a party that remains isolated, and this is property A6 (quotient game
for 1–player unions).

(c) Still in the parliamentary framework, one can consider that parties in the
original game, and unions in the quotient game, fight for something called “power”.
However, once each union got its fraction of power in the quotient game, it is often
convenient to share this index among its members efficiently. For example, and espe-
cially, whenever the coalition is winning and gives rise to a coalition government, that
will need to share cabinet and parliamentary positions as presidencies and ministries
and budgets management among its members. Even if one prefers the Banzhaf value
as power index, he/she will apply it in the quotient game, but will necessarily prefer
the efficient Shapley value when sharing within the union. In other words, he/she
will prefer the symmetric coalitional Banzhaf value π, because of the failure of Ψ as
to B6 and B7.

These examples show the relativity of the term “compelling” and hence the con-
venience of looking at axioms and axiomatic characterizations with no constraints
and to appreciate those axiomatizations that permit a comparison between different
(coalitional, in this case) values. We hope that the reader will hold this view and
agree, therefore, with our opinion so far expressed.

Remark 4.7 Finally, we would like to point out an additional criterion that supports
the use of the Banzhaf–Owen value Ψ as power index and comes from a rather differ-
ent, not axiomatic approach: the probabilistic one. We are referring to a nice paper
by Laruelle and Valenciano [25] where three meanings of Ψ are provided in the voting
context. By interpreting power as the ability—say, probability—to become decisive
in a voting process, the authors state three interpretations of this coalitional value:
(a) as a modified Banzhaf index of the given voting rule; (b) as the Banzhaf index of a
modified voting rule; and (c) as an (extended) Banzhaf index of an (extended notion
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of) voting rule. Two conclusions of this article deserve also being mentioned: (1) the
Banzhaf–Owen values of different agents can be compared only in case of players of
the same union, a condition to be taken into account in the applications of this power
index; (2) similar interpretations of other coalitional values in the voting context are
problematic; in other words, the arguments given for Ψ do not adapt convincingly to
them. Unfortunately, the authors leave to the reader the checking of this but give no
hint.

Acknowledgements

The authors wish to thank interesting suggestions and comments made by Professor
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