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Abstract

Alonso-Meijide and Fiestras-Janeiro (2002) proposed a modification of
the Banzhaf value for games where a coalition structure is given. In this
paper we present a method to compute this value by means of the multi-
linear extension of the game. A real-world numerical example illustrates
the application procedure.
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1 Introduction
In the context of TU games, two of the most important solution concepts are the
Shapley value ϕ (Shapley, 1953) and the Banzhaf value β, introduced by Owen
(1975) as a dummy-independent but non-normalized extension to all cooperative
games of the original Banzhaf-Coleman power index (Banzhaf, 1965; Coleman,
1971), which was restricted to simple games. One of the main difficulties with
these values is that computation generally requires the sum of a very large
number of terms. Owen (1972) defined the multilinear extension of a game, that
has been proven to be useful for such a computation, as both the Banzhaf value
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and the Shapley value of any game can be easily obtained from its multilinear
extension.
Indeed, the Shapley value of a game can be calculated by integrating the

partial derivatives of the multilinear extension of the game along the main di-
agonal x1 = x2 = · · · = xn of the cube [0, 1]N (Owen, 1972). In turn, the
derivatives of that multilinear extension, evaluated at point (1/2, 1/2, . . . , 1/2),
give the Banzhaf value of the game (Owen, 1975).
In the context of TU games endowed with a coalition structure, Owen (1977)

defined and axiomatically characterized a natural extension of the Shapley value,
the so-called Owen coalition value Φ. With a similar procedure, Owen (1981)
suggested an extension of the Banzhaf value to this context, and we will refer
to this new value as the Banzhaf-Owen coalition value Ψ. This second exten-
sion has been axiomatically characterized, only recently, by Albizuri (2001) and
independently by Amer et al. (2002). The multilinear extension technique has
been also applied to compute the Owen coalition value (Owen and Winter, 1992)
as well as the Banzhaf-Owen coalition value (Carreras and Magaña, 1994).
Alonso-Meijide and Fiestras-Janeiro (2002) introduced and axiomatically

characterized another solution concept for games with a coalition structure:
the symmetric coalition Banzhaf value π. As was mentioned in their paper,
only one property distinguishes the Owen coalition value Φ from the symmet-
ric coalition Banzhaf value π: efficiency is satisfied in the former case whereas
total power holds in the latter. This relationship cannot be achieved between
the Owen coalition value Φ and the Banzhaf-Owen coalition value Ψ, since the
quotient game and symmetry properties for unions are not satisfied by the latter
(for details, see Amer et al., 2002).
In this paper, we state how to use the multilinear extension to computing

the symmetric coalition Banzhaf value π and even its counterpart: a coalition
value µ introduced by Amer et al. (2002). In Section 2 we recall some basic
definitions. In Section 3, we introduce the procedure to calculate the symmetric
coalition Banzhaf value by means of the multilinear extension and we apply
this method to a real-world example. Finally, we include in Section 4 some
additional remarks and discuss other possibilities for evaluating the effects of
the coalition formation.

2 Preliminaries
A finite transferable utility cooperative game (in short, a TU game) is defined
by a finite set of players N , where |N | = n, and a real valued function v defined
on the subsets of N and such that v(∅) = 0. The multilinear extension of game
v is given by:

f(x1, x2, . . . , xn) =
X
S⊆N

Y
i∈S

xi
Y
j /∈S
(1− xj) v(S).

Let us consider a finite set N = {1, 2, . . . , n}. We will denote by P (N)
the set of all partitions of N . An element P ∈ P (N) is called a coalition
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structure or a system of unions on N . Two trivial systems of unions are given
by Pn = {{1}, {2}, . . . , {n}} and PN = {N}. A TU game with a coalition
structure is a triple (N, v, P ), where (N, v) is a TU game and P ∈ P (N).
Given a game with a coalition structure (N, v, P ), the symmetric coalition

Banzhaf value of a player i ∈ N is given by

πi(N, v, P ) =
X

R⊆M\{k}

X
T⊆Pk\{i}

1

2m−1
t!(pk − t− 1)!

pk!
[v(Q ∪ T ∪ {i})− v(Q ∪ T )],

where M = {1, 2, . . . ,m}, P = {P1, P2, . . . , Pm}, Q = ∪r∈RPr, and Pk ∈ P is
the union such that i ∈ Pk. For an axiomatic introduction of this value and
additional properties, see Alonso-Meijide and Fiestras-Janeiro (2002).

3 The computation procedure
In this section, we will describe the procedure by which the symmetric coalition
Banzhaf value can be obtained from the multilinear extension of the game.

Theorem 1 Given a TU game with a coalition structure (N, v, P ), where P =
{P1, P2, . . . , Pm}, the following steps lead to the symmetric coalition Banzhaf
value of a player i ∈ Pk.

1. Obtain the multilinear extension f(x1, x2, . . . , xn) of game (N, v).
2. For any l 6= k and any h ∈ Pl, replace the variable xh with yl. This yields

a new function of xj, where j ∈ Pk, and yl where l ∈M\{k}.
3. In the previous function, reduce to 1 all higher exponents, i.e., replace

with yl each yal such that a > 1. This gives a new multilinear function that we
denote as g((xj)j∈Pk , (yl)l∈M\{k}).
4. In the function obtained in step 3, substitute each yl by 1/2. This yields

a new function αk((xj)j∈Pk) defined by

αk((xj)j∈Pk) = g((xj)j∈Pk , (1/2)l∈M\{k}).

5. Finally, the symmetric coalition Banzhaf value of player i ∈ Pk is given
by

πi(N, v, P ) =

Z 1

0

∂αk
∂xi

(t, t, . . . , t)dt .

Proof.
Let (N, v, P ) be a game with a priori unions and let i ∈ Pk.
Steps 1-3 have already been used by Owen and Winter (1992) and Carreras

and Magaña (1994) in dealing with the Owen value and the Banzhaf-Owen
value, respectively. It will be useful to recall here their argument. By second
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and third steps, we get a multilinear function where those terms corresponding
to coalitions S such that S∩Pl 6= ∅ and (N\S)∩Pl 6= ∅ for some l ∈M\{k} are
null. In step 2, the terms corresponding to these coalitions include expressions
of the form kya1l (1 − yl)a2 , with a1, a2 ∈ N, and in step 3 these terms turn on
k(yl − yl) thus getting zero.
Then, the only coalitions S for which the corresponding term of the initial

multilinear extension does not vanish after steps 2 and 3 are those of the form

S = Q ∪R,
where R ⊆ Pk, Q =

S
l∈L

Pl, and L ⊆ M\{k}. The function arising after step 3
is

g((xj)j∈Pk , (yl)l∈M\{k}) =

X
R⊆Pk

X
L⊆M\{k}

Y
j∈R

xj
Y

j∈Pk\R
(1− xj)

Y
l∈L

yl
Y

l/∈L∪{k}
(1− yl) v(Q ∪R).

Substituting each yl by 1/2 (step 4) gives

αk((xj)j∈Pk) =
X
R⊆Pk

X
L⊆M\{k}

Y
j∈R

xj
Y

j∈Pk\R
(1− xj) 1

2m−1
v(Q ∪R).

By differentiating function αk((xj)j∈Pk) with respect to xi

∂αk
∂xi

((xj)j∈Pk) =

X
R⊆Pk\{i}

X
L⊆M\{k}

Y
j∈R

xj
Y

j∈Pk\(R∪{i})
(1− xj) 1

2m−1
[v(Q ∪R ∪ {i})− v(Q ∪R)].

Finally, by step 5, Z 1

0

∂αk
∂xi

(t, t, . . . , t)dt =

Z 1

0

X
R⊆Pk\{i}

X
L⊆M\{k}

Y
j∈R

t
Y

j∈Pk\(R∪{i})
(1− t) 1

2m−1
[v(Q ∪R ∪ {i})− v(Q ∪R)]dt =

X
R⊆Pk\{i}

X
L⊆M\{k}

1

2m−1
[v(Q ∪R ∪ {i})− v(Q ∪R)]

Z 1

0

tr(1− t)pk−r−1dt =
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X
R⊆Pk\{i}

X
L⊆M\{k}

1

2m−1
(r!(pk − r − 1)!

pk!
[v(Q ∪R ∪ {i})− v(Q ∪R)] = πi(N, v, P ). ¤

As is readily seen, the symmetric coalition Banzhaf value π reflects the re-
sult of a bargaining procedure by which: (a) the a priori unions receive in
the quotient game they play, i.e. in (M,vP ) where M = {1, 2, . . . ,m} and
vP (K) = v(

S
k∈K Pk) for every K ⊆M , the payoff given by the Banzhaf value

β; and (b) within each union Pk, the original players share this payoff βk(M,vP )
among themselves by using the Shapley value ϕ.
This is a mixed procedure, already suggested by Carreras and Magaña (1997)

in a more general set up, that may make sense in specific contexts. After all,
unions are in general of a different nature from original, single players, and the
quotient game vP may well possess features not found in the initial game v. The
question is not therefore “why will the unions follow, as entities, a different way
from players’ one?” but “why not?” Thus, it is only natural to go further and
to consider the possibility to interchange criteria and allow unions to use the
Shapley value and players within unions to adopt the Banzhaf value: indeed,
this is what is reflected by value µ, a “counterpart” of π introduced by Amer et
al. (2002) and defined for player i ∈ Pk by

µi(N, v, P ) =
X

R⊆M\{k}

X
T⊆Pk\{i}

1

2pk−1
r!(m− r − 1)!

m!
[v(Q ∪ T ∪ {i})− v(Q ∪ T )],

where M = {1, 2, . . . ,m}, P = {P1, P2, . . . , Pm}, Q = ∪r∈RPr, and Pk ∈ P
is the union such that i ∈ Pk. (A full generalization of the mixed bargaining
procedure idea will be dealt with in Remark 6 below.) Minor changes in the
steps of Theorem 1 give rise to a computation method for µ.

Theorem 2 Given a TU game with a coalition structure (N, v, P ), where P =
{P1, P2, . . . , Pm}, the following steps lead to the expression of µi(N, v, P ) for
every i ∈ Pk.
1. Obtain the multilinear extension f(x1, x2, . . . , xn) of game (N, v).
2. For any l 6= k and any h ∈ Pl, replace the variable xh with yl. This yields

a new function of xj, where j ∈ Pk, and yl where l ∈M\{k}.
3. In the previous function, reduce to 1 all higher exponents, i.e., replace

with yl each yal such that a > 1. This gives a new multilinear function that we
denote as g((xj)j∈Pk , (yl)l∈M\{k}).
4. In the function obtained in step 3, substitute each yl by r and integrate

with respect to r to get a new function αk((xj)j∈Pk) given by

αk((xj)j∈Pk) =
Z 1

0

g((xj)j∈Pk , (r)l∈M\{k})dr.
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Table 1: Seat distribution in the Catalonia Parliament, 1995-1999
i party number of seats wi
1: Convergència i Unió (CiU) 60
2: Partit dels Socialistes de Catalunya (PSC) 34
3: Partido Popular (PP) 17
4: Esquerra Republicana de Catalunya (ERC) 13
5: Iniciativa per Catalunya-Verds (IC-V) 11

5. Finally, differentiate with respect to xi and evaluate at point (1/2, 1/2, . . . , 1/2):

µi(N, v, P ) =
∂αk
∂xi

(1/2, 1/2, . . . , 1/2).

Proof.
Steps 1-3 are, of course, the same as in Theorem 1. The remaining of the

proof is, mutatis mutandis, analogous to that of Theorem 1. ¤

Both the Shapley and Banzhaf values, as well as their initial extensions to
games with a coalition structure (Owen, 1977; Owen, 1981), have been often
used as measures of power, by applying them to simple games and looking at
proportions rather than absolute payoffs (see Laruelle and Valenciano, 2002). In
order to illustrate the procedures stated in Theorems 1 and 2, let us present and
analyze a real-world numerical example of this kind of games. We will compare
the payoffs given by the symmetric coalition Banzhaf value π, its counterpart
µ, and the Owen and Banzhaf-Owen values Φ and Ψ, which will be computed
using the analogues of our method provided, respectively, by Owen and Winter
(1992) and Carreras and Magaña (1994).

Example 3 (The Catalonia Parliament, 1995-1999). We will consider here the
structure of the Catalonia Parliament, a typical western Europe parliamentary
body, during Legislature 1995-1999. Five parties elected members to this Spanish
regional house and shared the 135 seats as indicated in Table 1.
The straight majority rule requires here 68 votes to pass a bill. Because of

voting discipline, in this scenario the players are the parties rather than the
elected representatives. Then N = {1, 2, 3, 4, 5} and a simple game v is defined
by setting v(S) = 1 iff

P
i∈S wi ≥ 68 and v(S) = 0 otherwise. The set of

minimal winning coalitions of this game is

Wm = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3, 4, 5}}.
The multilinear extension of game v is therefore

f(x1, x2, x3, x4, x5) =
4X
i=2

x1xi −
4X

i,j=2

x1xixj +
4X

i,j,k=2

x1xixjxk + x2x3x4x5 − 2x1x2x3x4x5.
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Table 2: Power distributions in the Catalonia Parliament, 1995-1999
values CiU PSC PP ERC IC-V sum
weight fraction 0.4444 0.2519 0.1259 0.0963 0.0815 1.0000
ϕ(N, v) 0.6000 0.1000 0.1000 0.1000 0.1000 1.0000
β(N, v) 0.8750 0.1250 0.1250 0.1250 0.1250 1.3750
ϕ(M,vP ) 0.3333 0.3333 0.3333 1.0000
β(M,vP ) 0.5000 0.5000 0.5000 1.5000
Φ(N, v, P ) 0.3333 0.1111 0.3333 0.1111 0.1111 1.0000
Ψ(N, v, P ) 0.5000 0.1250 0.5000 0.1250 0.1250 1.3750
π(N, v, P ) 0.5000 0.1667 0.5000 0.1667 0.1667 1.5000
µ(N, v, P ) 0.3333 0.0833 0.3333 0.0833 0.0833 0.9167

Given the underlying political framework (the nationalist middle-of-the-road party
CiU was losing for the first time the absolute majority and hence its dictator
role held in previous legislatures, and PP, the catalan section of a right-to-center
national party, got its best result and confirmed the growing of this tendency in
Spain elections), a natural strategy in this situation would have been, in princi-
ple, the union of the three more or less left-wing parties, namely, PSC, ERC and
IC-V. In order to discuss the effects of such a coalition, we provide in Table 2
the results of applying the Shapley and Banzhaf values ϕ and β to games (N, v)
and (M,vP ), where P = {{1}, {2, 4, 5}, {3}} and M = {1, 2, 3}, and our four
extensions Φ, Ψ, π and µ to the game with coalition structure (N, v, P ). (When
dealing with the quotient game, the payoffs will be given in the CIU, PSC and
PP columns.)
As a matter of illustration, let us show how to compute π2(N, v, P ) using

Theorem 1. After applying steps 1-3 we get

g(y1, x2, x3, x4, y3) = y1(
4X
i=2

xi −
4X

i,j=2

xixj + x2x3x4)

+y1(1−
4X
i=2

xi +
4X

i,j=2

xixj − 2x2x3x4)y3 + y3x2x3x4.

Then

α2(x2x3x4) =
1

4
(1 +

4X
i=2

xi −
4X

i,j=2

xixj + 2x2x3x4),

∂α2
∂x2

=
(1− x3 − x4 + 2x3x4)

4

and, finally,

π2(N, v, P ) =

Z 1

0

(1− 2t+ 2t2)
4

dt = 1/6.

Several comments are in order. (1) All values show that the union of the left-
wing parties favours them in the sense of decreasing the main party’s relative
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power, but at the same time it enhances the strategic position of PP, a most
natural opposite to the union. (2) The symmetry among the four minor parties
existing in the original game is kept in the union but is broken with regard to PP.
(3) Among the four extensions, only the Owen coalition value Φ and the coalition
symmetric Banzhaf value π satisfy the quotient game property, i.e., they share
within each union exactly the amount this union gets in the quotient game. (4)
The Banzhaf-Owen value Ψ preserves the payoffs of the parties joining, but the
changes concerning the outside parties CiU and PP make clear that the power
proportion has been modified by the union.

4 Final Remarks
Remark 4 In Alonso-Meijide and Fiestras-Janeiro (2002) it is noted that the
symmetric coalition Banzhaf value is an extension of the Shapley and Banzhaf
values. More precisely, given a TU game (N, v),
(i) π(N, v, Pn) = β(N, v) and
(ii) π(N, v, PN ) = ϕ(N, v).
Taking this fact into account, it is easy to prove that the procedure described

in Theorem 1 above can be used to compute the Banzhaf value and the Shapley
value of a TU game. To compute the Banzhaf value of a game (N, v), we follow
the proposed steps taking P = Pn, and to compute the Shapley value of this
game we follow the proposed steps taking P = PN .

Remark 5 In Alonso-Meijide and Bowles (2002), new procedures based in gen-
erating functions are described to compute coalition values for the particular case
of weighted majority games.

Remark 6 Following a suggestion of Carreras and Magaña (1997), there is a
wide variety of ways in which unions and players can evaluate their strategic
positions, in the quotient game the former and within each union the latter. In
fact, even the starting point, that is, the evaluation of the original game, could
be done by means of a semivalue, as both the Shapley and the Banzhaf value
belong to this class of solution concepts. Semivalues were introduced by Weber
(1979) on simple games and extended to all cooperative games by Dubet et al.
(1981), and generalized later on by Weber (1988), dropping symmetry, to get
the notion of probabilistic value. For details on the usefulness of semivalues in
order to incorporate, into the evaluation of a game, additional information not
included in the characteristic function, we refer the interested reader to Carreras
and Freixas (2002).
As to the use of the multilinear extension to compute semivalues, we refer to

Giménez (2001), where it is shown that (a) binomial semivalues can be computed
in a way very close to that of the Banzhaf value and (b) any other semivalue
requires using a geometrical reference system of the semivalue simplex, given
by any n binomial semivalues, and a linear map whose matrix depends on (the
partial derivatives of the multilinear extension of) the game and the reference
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system; this computation procedure applies even to the Shapley value, so that no
integration step is needed.
Then, by adopting the wider semivalue viewpoint, we can speak of homo-

geneous evaluation when the same semivalue is used by unions and by players
within each union, as is the case of the Owen coalition value and the Banzhaf-
Owen coalition value, and even that of modified semivalues introduced by Giménez
(2001), which are coalition values of the original semivalue. A parallel way to
compute is also given by Giménez (2001) for modified semivalues by means of
a bilinear form whose matrix depends, again, on the game and the reference
system. It is worthy mentioning here that in the case of modified binomial
semivalues Carreras and Magaña’s (1994) procedure applies as well.
However, one can also speak of heterogeneous evaluations. Players within

each union might use a value different from that used by unions, as it is the
case of the symmetric coalition Banzhaf value π and also of its counterpart
µ. But even it is also possible, as suggested by Carreras and Magaña (1997),
that unions use some value in the quotient game and, then, the players of each
union use a value different from that of the unions and from those used within
other unions! After all, freedom is a human aspiration that we should take into
account in our mathematical modelling of real life behavior and the contract for
forming a union can (in fact, it should) perfectly specify the way to share profits
among its members.
Then, a formal notation will help us to better distinguish the several types of

evaluation that can arise. Let σ be the semivalue used by unions and ρ1, ρ2, . . . , ρm
the semivalues used by each union. We denote the compound rule as

σρ1, ρ2, . . . , ρm.

With this notation, a first level of homogeneity is attained in case σρ, ρ, . . . , ρ =
σρm for a some common ρ. Then we have π = ϕβm and µ = βϕm. A further
homogeneity level is, finally, found in the case where σ = ρ, like in the classical
extensions provided by Owen (1977, 1981): in these cases, Φ = ϕϕm and Ψ =
ββm.
We think that these ideas open a wide research field, on both the technical

side and the interpretative side.
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