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In this article, a new semiparametric prediction system is presented for time series. The prediction
method incorporated to the system consists of a nonparametric part that estimates the trend, a Box—
Jenkins prediction of the residual series, and some bootstrap methodology to construct prediction
intervals. Consistency of the estimators proposed for the autoregression function and the parameters in
the Box—Jenkins model and the validity of a new bootstrap resampling plan adapted to autoregressive
integrated models are proved. The Monte Carlo simulation study, as well as the applications to real
data (carried out with the automated system, incorporating the method, developed for predicting con-
centration levels in the surroundings of a Spanish power station), show that this method outperforms

other standard competitors.

KEY WORDS: Concentration levels; Kernel estimation; Semiparametric; Time series.

1. INTRODUCTION

Let (Z;,Y)),1 = 0,£1, 42, ..., be a strictly station-
ary series, where Z; is an r-dimensional series and Y} is
a one-dimensional response series. We want to estimate
() = o(F(.1Z; = 20)), where F(.|Z; = z0) is the
conditional distribution of ¥; given Z; = z}, using a series
{(Z;, Y} of length n. Frequently, ¢ is the mean or me-
dian functional. In particular, when ¥; = X;,, k > 1 and

= (X,,..., X;—r+1), where X, is a stationary series,
we are estimating the autoregression function of order k,

Y %) = Xi—r+1)

(p(xl,...,xr —E(Xz+k|(X1,...,
= (..., x2)),

using the sample {X; 11, ..., X} of size m.

In the literature of time series, there are essentially
two approaches. The Box—Jenkins methodology approx-
imates an autoregression function (1) using a linear com-
bination of variables by minimizing the mean squared
prediction error. For an (autoregressive) AR(p) model,

= Yo+ V1 Xio1 + -+ ¥ X -+ ar, where {a)} is
white noise, r equals p, and the autoregression function
of order k is given by p(x?, ... X0 = B4y Bx0 4

-+ ¥ 9x§, where the coefﬁments @, ¥ ) are
recurswely derlved in k steps from the one-lag coeffi-
cients (o, ..., ¥p,) using the model equation (for more
details, see Wei 1990, p. 89). For an (autoregressive mov-
ing average) ARMA(q, s) model given by ¥ (B)X;
6(B)a;, where ¥(B) = (1 — Y B — --- — 3, BY) and
8(B) = (1—0,B—---—8,B*), there does not exist linear
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autoregression function of order k Yet, the optimal linear
predictor X, = (k) + 1,[f(k) Y ® X,y is
constructed using the Durbm—Levmson algorithm (Brock-
well and Davis 1991, chap. 5) with an initial sample of
size m. In both cases the ¥ coefficients must be estimated
using the observed sample (note that the number of coef-
ficients to be estimated is not the same in the AR and the
ARMA cases).

The second approach is based on nonparametric proce-
dures. The function (p(z Y=EY|Z =z 9 is estimated
directly without making any parametric assumption on it.
In general, given a sample {(Z;, Y;)}!_,, the estimator is
given by

n
= W2, (Z1, V), o (Zn, Y)Y Yis ()
i=1
where {W,;} can be a sequence of kernel weights, k,—
nearest neighbors, and so forth. This approach to predic-
tion is newer. The following are outstanding works on the
topic:

1. Yakowitz (1985). In this article, ¥; = X,4; is pre-
dicted from Z, = X, using a sample {X;,..., Xu} in
a Markovian stationary model. The function ¢(x) =
EXy1 1 Xy = x) is estimated from (2) using kernel
weights

k(5
Woi(x, (X1, X2), .., (Xn, Xpp)) = ———2—"o—,
Y K (550
i=1,...,n—m—1, (3)
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where K is the kernel function and 4, is the bandwidth
parameter. Yakowitz presented in this work the predic-
tion @,(X;) as a good alternative to ARMA models when
predicting river floods.

2. Yakowitz (1987). In this article, ¥; = X,41 18
predicted from Z; = (X,, Xi—1, ..., Xe—piets Uss oo o
Ui—py+1), Where p1 + p» = p. X is a stationary se-
ries, generally Markovian, U is an exogenous stationary
series, and the sequence of weights is of the k,—nearest
neighbors type,

(L20-z1<rmn)
kn
i=1,....n (@)

>

Wiz (Z0, YD, o (Zn, o)) =

constructed using a sample of size m of X; and the corre-
sponding exogenous U; with p; < pyandn =m — p;.

Our interest in prediction arises from a study of the con-
tamination produced by SO, near a Spanish power station.
In Spain, the mean of the SO, concentrations (recorded ev-
ery five minutes), observed during a two-hour period, can-
not exceed certain permitted values. To maintain control
over SO, concentrations, the power stations must take ac-
tion with alead time of about a half hour when the observed
concentrations reach disturbingly high levels. At each
time ¢ we receive a new observation X, of SO, concentra-
tion and must predict X,,¢ knowing X,, X;_1, .... From
experience, we know that the observed time series has spe-
cial features—for example, long periods of stationarity,
sudden and sharp explosions, or episodes corresponding to
uncontrolled increasings of SO, concentrations. The lack
of stationarity of the series during the episodes suggests
that Box—Jenkins methodology does not forecast well dur-
ing an episode. (Recall that the main goal of forecasting
is to prevent high SO, concentrations; this can happen
only when an episode arises.) Figure 3, Section 4, shows
the poor behavior of Box—Jenkins methodology during
an episode recorded in the surroundings of the As Pontes
power station in 1990 (see Sec. 4 for more details).

In this article, we present an alternative to Box—Jenkins
methodology by generalizing the preceding nonparamet-
ric model to a semiparametric model. Consider the model

Y = o(Z) + e, %)

where ¢; has an ARMA(q, s) structure independent of Z;;
we will focus on predicting Y, after observing the series
Y; up to time (¢t — k) and Z; up to time ¢. In particular,

using the sample (Z;—pt1—k, Yr—nt1-k), - - -, (Zi—k, Yioi)
of size #, the prediction ¥; of T; is defined by
On(Z)) +é, (6)

where @, is the nonparametric estimate given by (2)
with weights of the type (3), (4), and so forth and ¢,
is the Box—Jenkins prediction, k instants ahead, con-
structed from the estimated ARMA component of the se-
riese; = Y, — @,(Z,). Our interest in this semiparametric
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model comes from our experience with real data on SO,
concentrations because the residuals from the nonpara-
metric prediction stage are generally not white noise.
This suggests that the nonparametric predictions might
be improved by the semiparametric ones. Other semi-
parametric approaches that use nonparametric and para-
metric estimations have been treated in regression with
a linear component and a nonparametric component;
compare Speckman (1988), Robinson (1988, 1989), and
Cuzick (1992).

In Section 2 we study the problem of constructing pre-
diction intervals adapted to Model (6). A new bootstrap
approach, more general than that proposed by Thombs
and Schucany (1990), is presented for autoregressive
integrated (ARI) models. In Section 3 we present a simula-
tion study comparing the already existing prediction tech-
niques and the approach introduced in this article. This
approach is proved to be competitive in such a simulation
study as well as with real data related to ambient con-
centrations problems (as described in this introduction).
Finally, we include a section of conclusions and an ap-
pendix with the proofs of the consistency of the nonpara-
metric and parametric estimators given in (6) and of the
bootstrap for ARI models used in our prediction intervals.

2. PREDICTION INTERVALS
2.1 Box—Jenkins Prediction Intervals

Because {e;} is not observable, it seems natural to
work with the prediction ¢, constructed from the esti-
mated ARMA component recall, {€; (041 = Yi—uiy+1
—~0u(Zi—uiy+1)s - - » €1k = Yi_x — Pn(Z; 1)} The pa-
rameters of this ARMA model are consistently estimated
under the same conditions as the ones in Theorem 1 in the
Appendix. Moreover, taking into consideration the classi-
cal Box—Jenkins methodology, an asymptotic «-level pre-
diction interval for Y, can be constructed:

k=1 172
Pu(Z) + & £ 2ap (32 > ’7?]2> : D

j=0

where z,» represents the 1 — o/2 quantile of the standard
normal, G2 is the classical estimation of the variance as-
sociated with the white-noise component of the ARMA
series {¢;}, and the 7; are the estimated coefficients of the
polynomials 7; obtained from the relation

0(B)

T =S EHa— B

where the 6 and 1 coefficients are consistently estimated
from the ARMA part {¢;}. The factor (1 — B)? is in-
corporated to cover the more general case in which {e;}
follows an (autoregressive integrated moving average)
ARIMA(g, d, s) model (see Wei 1990, p. 91, for further
details).
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2.2 Bootstrap Prediction Intervals

The prediction interval given in (7) is based on the
critical assumption that {g;} is white noise; it behaves
poorly when this assumption fails. An alternative in-
terval is provided by the bootstrap methodology. For a
simplified model in (5) without nonparametric compo-
nent (¢ = 0) and with {¢;} following an AR(g) struc-
ture, Thombs and Schucany (1990) proposed a bootstrap
mechanism to approximate the conditional distribution of
e IVEN &k, €1 f—1, - - - €1 (nth)+1-

Here we propose an adaptation of this mechanism that
can be used more generally in ARI(g, d) models. Sup-
pose that {e;} in (5) follows an ARI(g,d) structure
with ¥ (B)(1 — B)e; = a;, {a;} being noise. Clearly,
the series & = V¢ follows an AR(g) model;

H_,k(t = —n+14+4d,....,—gad i = 1,...,
k) is obtained as done by Thornbs and Schucany
(1990), and the bootstrap series can be produced

iet (n=d)—k+17" "+ e*q k,et —g—k+15- - , €1k, € t k4l
e}, It is not difficult to show, by mductlon in d, that

the (k + d) x (k + d) linear system

i=1,...,k,
j=t—d+1,...,¢t,

d % ok
Ve i =€t

*
Cig = €j—k>

has a (unique) solution in e ,J=t—d+1—k,.
As a consequence ef can be expressed in terms of e
e 1o €tk -+ Crmd—kt1- The bootstrap rephcatlon
of thls process many times produces the following approx-
imate prediction interval (k lag) for e,: (z;®/?, 77~/?),
where 2% and 77 "*/? arc the ¢/2 and 1 — oz/2 quan-
tiles of the bootstrap distribution of ef. Hence, under
model (5), a semiparametric prediction interval for Y, us-
ing the bootstrap prediction interval can be given by

@ Z) +77 Gz + 27, ®)

where the bootstrap quantiles Z* are obtained from the
ARMA component {¢;}. The consistency of the interval
#(/2) _x(l—a/f2)\ .

Z; . Zr ) is a consequence of the consistency of
the bootstrap for ARI models and is proved in Theorem 2
in the Appendix.

Although these bootstrap intervals when ¢ # Ohave not
been shown to be consistent (this may be part of future
research on this topic), we will see in Section 4 that its

performance is competitive with Interval (7).

3. A SIMULATION STUDY

We conduct a comparative simulation study for the
one-lag point prediction of three series {X;} using the
Box-Jenkins methodology, the proposed semiparametric
approach (5), and the pure nonparametric prediction. For
every series, the study consists of repeating N = 100
times the following two steps:

1. Aseries {X;,] = 1,..., m = 200} is generated as

observations 301, 302, ..., 300 + m from the simulated
model. Denote them as Xy, Xa, ..., X, with Xg = 0.

2. Using X4, ..., X,,, a new observation X, is ob-
tained M = 1,000 times.

The simulated models follow the structure in Model (5):

1. Series I—ARMA(1, 1) model: X; = 7X;_; + a
—.4a;_; with g; white noise. This corresponds to the
choice Yl = X],Z[ == X[..],E[ = aq; — .4(11_1, and

0(Z)) = 12,
2. Series 2—pseudostationary model: X; = Z; + ¢;
with Z; = 3 sinwl, @ = 27 /30, and ¢; with the same

ARMAC(1, 1) structure as the previous series.

3. Series 3—nonlinear AR model: X; = R(X;_1)+¢&
with R(x) = 197/20 sinx, x € (0,7), and g ~
Ul—m /20, 7 /20], iid. This correspondsto ¥; = X, Z; =
X;_1,e; =¢,and ¢ = R.

Observe that Series 1 is a pure Box—Jenkins model,
but Series 2 is a slight perturbation of it and Series 3
is clearly nonlinear. For each of these models, we
compare the one-lag predictor for the following three
procedures:

1. The optimal estimated Box—Jenkins predictor [se-
lected from among all possible ARIMA(q, d, s) models
withg < 6,d < 1,s < 6] using International Mathemat-
ical and Statistical Libraries, Inc. (1991) routines.

2. The pure nonparametric predictor obtained estimat-
ing E(X,.1 | X; = x), using the kernel method. We con-
sidered the Gaussian kernel [with weight of type (3)].
The bandwidth h,(n = m — 1) is selected using a
cross-validation method adapted to each point x; that is,
hy = hy(x) (Vieu 1991). The weight function for this
cross-validation method is taken following the indications
of Vieu (1991).

3. The semiparametric predictor obtained as described
in Section 2. The nonparametric estimator is the predictor
in 2, and the parametric estimator (for the residual series)
uses the Box—Jenkins predictor in 1.

If we denote by Xt .. X’zoo,i = 1,...,N = 100,
each one of the three 31mu1ated models and X200 1o
Xz’(’)o 41> and X200 +1» €ach one of the three one-lag pre-
dictors, the methods are compared using the squared and
absolute value criteria
XN: 1

=1

-~ 2
X001 — X lzloo+1) 9

zmz

= I

and

1S 1A o
N Z M Z |X§60+1 - Xlzlo0+11’ (10)

i=1 j=

—t

where X5, represents the observed value in the jth ex-
tension of the series {X,,}7"_ 1 (obtained in the correspond-
ing repetition of Step 2), j = 1,..., M = 1,000;] =
a, b, or c. These criteria estimate the mean squared er-
ror (MSE) E(X1+1 — X;41)? and the mean absolute error
(MAE) E(|X1+1 — X1411), respectively.

TECHNOMETRICS, AUGUST 1995, VOL. 37, NO. 3
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Table 1. Mean Squared and Mean Absolute Errors

. SP . . :
Bandwidth Squa. S Squa. NP Abs. SP Abs. NP

x factor Squa. B-J .5 1 1.5 .5 7 1.5 Abs. B-J .5 7 1.5 5 ) 1.5
Model 1 1.0311 1.0456 1.0330 1.0305 1.0550 1.0555 1.0630 .8237 .8364 .8254 8231 .8444 .8450 .8516
Model 2 1.2220 1.1695 1.1966 1.25661 1.2015 1.2239 1.3555 .9967 9464 .9515 1.0295 .9752 .9946 1.1215
Model 3 .8002 .2881 .2869 .2905 .2891 .2696 .2857 .7919 .2732 .2731 .2761 .2742 .2453 2712

The results obtained are shown in Table 1. The non-
parametric and semiparametric estimations are carried out
using three different bandwidths, obtained by multiplying
the local cross-validation bandwidth by the factors .5, 1,
and 1.5.

Figure 1 represents the variation of the MSE as a func-
tion of the bandwidth for the three methods.

The most relevant conclusions of this simulation study
are:

1. The Box--Jenkins prediction is competitive when
the structure is close to Box-Jenkins (Models 1 and
2). The nonparametric prediction behaves reasonably well
for bandwidths with multiplicative factors close to 1, but
gets worse as the factor increases (observed in simulation
studies not included here). The semiparametric prediction
is fairly good in any case, regardless of bandwidths and
model, and is close to the best observed here for Models 1
and 2 (Box—Jenkins or nonparametric predictor).

2. The bandwidth selection is very important in the
nonparametric method and in the semiparametric method.
In general, the optimal local cross-validation bandwidth
does not appear to be the optimal semiparametric one.
The latter tends to be larger in situations like Model 1.
This is natural because the nonparametric oversmoothing,
present in the semiparametric methodology, is similar to
the Box-Jenkins method.

3. In the nonlinear model, the Box-Jenkins method is
definitely worse than the others. Figure 2 shows the three
predictors for one of the simulated series of Model 3;
similarly poor performance will be seen on real data in
Section 4.

141

12
_é P ] Series ]
<
g I T T
=3
“ 06

Series 3
04
02 t + t 1
000 050 1.00 150 200
Bandwidth factor

Figure 1. Unconditional Mean Squared Error—Series 1,
ARMA(1, 1) Model; Series 2, Pseudostationary Model; Se-
ries 3, Nonlinear AR Model: ----, Box-Jenkins; - Semi-
parametric; , Nonparametric.
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4. APPLICATION TO REAL DATA

We have applied the semiparametric prediction model
in our design of a forecasting system implemented in
the coal-fired power station in As Pontes, located in the
northwest of Spain. Six tracking stations provided with
automatic analyzers record SO, concentration levels and
transmit them to the central laboratory of the station every
10 seconds. Every five minutes these data are averaged
and the resulting value (together with the other 23 analo-
gously obtained in the last two hours) is used to produce
the two-hour mean. These two-hour means are the values
to be controlled according to the Spanish laws. With the
resources available in the power station at As Pontes, it
takes about half an hour after the decision to intervene
in the combustion process to achieve the required reduc-
tion. Because a new datum is recorded every five minutes,
we have to predict the concentration level six times ahead
and, according to that prediction, decide whether or not
to intervene. Speed and accuracy of the forecast are very
important.

Our experience with series of this type indicates that it
can suddenly and sharply increase; these abrupt changes
(episodes) are usually quite separated in time. All of the
peculiarities mentioned previously should be considered
when designing the forecasting model.

These characteristics suggest that Box~Jenkins metho-
dology would not predict well. In Figure 3 we show the
predictions (always six times ahead) along a real episode
(August 11, 1990) using Box—Jenkins methodology, along
with the forecastings (dotted line) and the observed series
(thick solid line). The discontinuities of the dotted line
are because sometimes it is not possible to find a suitable

3.2

2 4 T Tl
> -~
Xt 16

0 0.4 (% 12 16

Xt-1

Figure 2. Estimation of the Autoregression Function
@(Xe_1) = E(X¢ | X¢_4): o, Data; ----, Box-Jenkins; — —, Semi-
parametric; ——-, Nonparametric.
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Concentration Level

"o 182 36.4 54.6 72.8 91
Time

Figure 3. Prediction Using a Pure Box-Jenkins Model,
the Nonparametric Methodology, and the Semiparametric
Model: , Real; , Semiparametric; -——, Nonpara-
metric; ----, Box—Jenkins.

ARIMA model with a moderate number of parameters
(we allow no more than two differences and no more than
five parameters in the AR or the MA parts). The results
are not very satisfactory.

In view of the drawbacks of the Box-Jenkins methodol-
ogy, we estimated E (X6 | X;, X;_1) nonparametrically
using the Nadaraya—Watson estimator [see (3)] with cross-
validation bandwidth and Gaussian kernel. At every time,
for modeling and inference, we consider the datarecorded
in the last six hours (72 observations). We call them the
active series at that time. But now, the corresponding ac-
tive series is not long enough to produce the prediction
in every [. The reason is that, as we have already re-
marked, the episodes observed are too separated in time,
80 it is quite probable that, in a certain time, the active se-
ries does not contain an episode. Consequently, the non-
parametric prediction can behave badly in the episodes
when using only the active series in every time. Hence
we decided to design a kind of memory for the prediction
mechanism in such a way that it uses all of the experience
accumulated up to that moment. This memory is embod-
ied in what we call the historical matrices. They con-
sist of 500 vectors of the form (X;_;, X, X;14). Those
vectors are grouped according to the value of their re-
sponse component X,,¢, forming nine classes. At ev-
ery time ¢, a new observation X; is received. Then, the
historical matrix is updated in the following way: The
class to which the new vector (X;_7, X;_g, X;) belongs
is found; then, the oldest vector in such a class is re-
placed by (X, 7, X;—¢, X;). Now, if we use the histor-
ical matrix instead of the active series to compute the
Nadaraya—y\/atson estimation of E(X;16|X;, X;_1), de-
noted by E(X,;6]1X;, X,—1) = $.(X;, X,-1), the non-
parametric prediction improves remarkably (to avoid the
“curse of dimensionality,” we use only two explanatory
variables). In Figure 3, we also show the nonparamet-
ric predictions (always six times ahead) using the sample
of the historical matrix at every time ¢. The forecastings
are displayed with a dashed line. The results are much
better.

The nonparametric methodology seems to perform bet-
ter than Box—Jenkins methods, but it is not completely
satisfactory. In fact, if we perform a Ljung-Box test
of model adequacy (Ljung and Box 1978) on the series
W,_64, ey W,, where W,' = X,' - E(X, |X,'_6, Xi_7),
for every i, the null hypothesis of a noise series is not
always rejected. To address this issue, we first estimate
E(X, 161X, Xt—1), then fit an ARIMA model to the se-
ries W,_M, e VT/, (testing its adequacy with the Ljung—
Box test) and obtain the Box—Jenkins prediction of Wt%
(which would be 0 if the series of the VT’, is accepted to
be noise by the Ljung—Box test). The final point predic-
tion we propose is @, (X;, X,—) + W,+6 corresponding to
Model (5), where Z, = (X;, X,.1) and ¢, = W, .

In Figure 3 we also show the predictions (always six
times ahead) using this semiparametric model (thin solid
line). Comparing the three lines in Figure 3, we can see
that the semiparametric model outperforms the pure Box~
Jenkins approach, whereas it seems to be slightly better
on average than the pure nonparametric approach. These
statements are clearly confirmed in view of Table 2, which
contains two measures of accuracy for the three different
predictors,

: 1/2
<MSE>1/2=<<1/T> > fﬁ)

l=t—T+1

and

t
MAE = (1/T) Y |E],
l=t—T+1

where E’l = X6 — X, 1+6 18 the observed predictor er-
ror and 7 = 79 in our case. Both measures confirm
that, along this episode, the semiparametric approach
performs best, followed by the pure nonparametric ap-
proach and, far from the other two, by the pure Box-
Jenkins approach. From these results it seems that the
nonparametric estimation of E(X;¢ | X;, X;—1) captures
the trend of the series very well (and, besides, makes it
stationary), but the forecast can be improved: A further
parametric modeling of the residuals may produce better
predictions.

Table 3 displays the complexity (number of differences
and total number of ARIMA parameters) of the ARIMA
models that fitted the residual series or the observed series
in the Box—Jenkins approach. We can see that, along this
episode, in 9.41% of the cases the nonparametric predic-
tion is sufficient (the estimated ARMA component turned

Table 2. Forecast Error

Model MSE"? MAE
Nonparametric 72.41 44.57
Semiparametric 67.64 40.99
Pure Box-Jenkins 171.65 88.38

TECH!'OMETRICS, AUGUST 1995, VOL. 37, NO. 3
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Table 3. Number of Differences and Total Number of
ARIMA Parameters

Pure Box-Jenkins Semiparametric

Differences

0 .00% 93.50%

1 83.75% 6.50%

2 16.25% .00%
Parameters

White noise .00% 9.41%

Tor2 .00% 16.48%

3oré 14.12% 67.06%

More that 4 80.00% 7.05%

Out of range 5.88% .00%

out to be noise). Moreover, when a further ARIMA model
is needed, the number of parameters in such a model is
four or less in more than 83% of the cases, whereas, when
adopting a pure Box—Jenkins approach, only in 14.12% of
the cases were four or less parameters enough. Regard-
ing differencing, in the semiparametric approach, 93.5%
of the time no differences were necessary in the paramet-
ric part of the model, whereas 100% of the time some
differences were necessary when using the pure Box—
Jenkins approach. Similar resuilts were obtained in other
episodes. In summary, it seems that the nonparametric
part helps to capture the trend of the series and to find ap-
propriate simpler ARIMA models for the corresponding
residuals.

In Figure 4 we present the Box—Jenkins and bootstrap
prediction intervals (¢ = .05) obtained in every time as
described in Section 2.

We can clearly see in Figure 4 that the bootstrap inter-
vals perform better than the classical ones in this episode
(similar results were observed in other episodes). This vi-
sual feeling is confirmed in Table 4, which shows how the
bootstrap intervals outperform the classical ones (along
this episode): The latter are too conservative, whereas the
former are shorter and have a coverage rate much closer
to the theoretical coverage (95%).

2300, r T T T T T 7 T 7 i H :‘I

1840, —

1380, —

Concentration Level

460.

91

Figure 4. Classical and Bootstrap Confidence Intervals:
, Real; x----x, Box-Jenkins; o----o, Bootstrap.
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Table 4. Confidence Intervals (95%)

Intervals Length Coverage
Classical 343.43 100%
Bootstrap 196.94 94.87%

5. CONCLUSIONS

In this article, a new k-lag prediction system is
presented. Such a system is based on a semiparamet-
ric mechanism that consists of the sum of a nonparamet-
ric prediction and the parametric Box—Jenkins prediction
performed on the ARMA component of the series. Under
quite general conditions (see Theorem 1 in the Appendix)
the nonparametric and the parametric predictions are con-
sistent. The behavior of this new system, when applied to
a series { X}, is competitive in comparison with the Box—
Jenkins and the nonparametric methodologies, as can be
deduced from the simulation study in Section 3. Although
the smoothing parameter is important in the semiparamet-
ric model, its importance is smaller than it is in the non-
parametric estimation, as can be seen in Figure 1, where
a higher sensitivity to the bandwidth is observed in the
nonparametric method. One of the advantages of our pro-
cedure, observed in the simulation study as well as in the
application to real data, is that it finds simpler predictive
models than the pure Box—Jenkins procedure, which often
has to use ARIMA models with many parameters (recall,
for instance, Table 3) and a nontrivial MA part. This last
point is very important because, to predict using bootstrap
prediction intervals [of type (8)], one is forced to use an
ARI model in the residual series.

It is important to remark that the environmental anal-
ysis performed in this article includes modern statistical
techniques, such as curve estimation and bootstrap infer-
ence. In other recent environmetrical work, such as that
of Uri (1991) and Herndndez, Martin, and Valero (1992)
about analysis of water quality and air quality, respec-
tively, the statistical methodology consists of more classi-
cal tools such as Box—Jenkins models and Kalman filters.
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APPENDIX: MAIN PROOFS

A.1 Consistency of Nonparametric and
Parametric Estimators

Under Model (5), the (r + 1)-dimensional series {(Z;,
Y1)}, is stationary. In this case, under (a) Lipschitz con-
ditions on the function g, (b) lower and upper boundedness
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on the marginal density of Z and the conditional densities
of Z; | Zy (j = 1) (assumed to exist), and (c) asymptotic
independence conditions of ¢-mixing type with geometric
rate [o(N) = O(p"), where N - oo and 0 < p < 1],
then consistency properties are proved for the nonpara-
metric estimator of ¢. More precisely, given a sample
{(Z;, Y1)}]_,, and using kernel weights

K(2)

Yo K (5

with uniform kernel K, the following optimal rates are
derived for the nonparametric estimator @,:

logn 7
o
_ 1\
||§0n - @”2 = Op (;)

(under boundedness of the ath absolute conditional mo-
ment of ¥, given Z,, for some a > 2); see Truong and
Stone (1992) for details. The preceding norms || ||o and
Il ll2 are computed on the support of Zy. These rates re-
quire the appropriate choice of h,,.

Hence we have the consistency of the nonparametric
estimator of ¢ in (5). We did not, however, treat the es-
timation of the parameters of the residual ARMA model
yet. To do that, being more precise in Model (5), sup-
pose that the series {¢;} has an ARMA(g, s) structure:
Y (B)e; = 6(B)a;, where ¥ and 6 are polynomials with-
out common roots and all of the roots of ¥ lie outside of
the unit circle. We have the following result:

Wm’(ZO: (Zlv Yl)’ D (va Yn)) =

”an - §0”oo

and

Theorem 1. Provided that the nonparametric esti-
mator of ¢ is uniformly consistent o — ¢l =
op(D)], then (@, %) — (8, ¥)|» — O in probability,
where (/9\, @) are the (¢ + s)-dimensional estimators of
O1,....05,V1,...,¥y) = (0, ¥) performed with the es-
timated ARMA component of the seriese; = ¥; —@,(Z;).

The estimation of (8, v) is carried out using any mecha-
nism that would be consistent if the estimation were made
using the unobserved series {¢;}. For details about sev-
eral consistent methods of estimating (6, ) using {¢;},
see Brockwell and Davis (1991, chap. 8). Because they
are based on the sample autocovariance function of the
unobserved series

t—k—j

Z €rei+j,

=7 S

Yaj) = j=0,1,2,...,

to prove the consistency we should demonstrate that the
estimated autocovariance function

1—k—j

Yu(j) = ee, j=012,...,

(=7 S

satisfies that ¥,(j) — %(j) = op(l), j = 0,1,2,....
This is proved later.
Because

ey = eeryj — ey j(0n(Zy) — @(Zy))
— e (Pn(Zi3j) — 9(Zi1)))
+ @u(Z1) — (Z1)) X @n(Z115) — 0(Z115)),
l=t—n+1—k.. t—k-]j

and taking into account the uniformly consistency of
G (Gn — 9l =op()) and that EE SIZF el =
E(le) < o0 137050 1 lel = op(1), 7,(j) — 7ali)
=op(l), j=0,1,2,..., as stated.

There are some possible estimators for (@, ¥); we
consider the estimators based on the Durbin-Levinson
algorithm. From the assumptions in this theorem, the

unobservable ARMA(q, s) series {¢;} satisfies

o0
&= na-;
j=0

with
nj = Z Vinj—x = 0j, 0<j < max(g,s+1)
O<k<j
and
ni— O vmja =0,  j=max(g,s+1).
O<k<q

Using the innovation algorithm, ((/9\,”1, e gmm) withm =
o(n'/3) gives the best linear predictor 0,1+ - - - + Opmer
of e,41 (see Brockwell and Davis 1991, p. 246). Such
estimators depend on the autocovariance function ¥, (j)
[Brockwell and Davis 1991, formulas (5.2.3) or (8.3.2)].
Substituting the estimators /0:,11, .. .,@,,(q+_v) instead of
N1, ..., Ng+s in the preceding equations, we have consis-
tentestimators for (61, .. ., 6, ¥1, .. ., ¥,) (cf. Brockwell
and Davis 1991, p. 253).

Assuming some differentiability conditions for ¢ and
using a (nonparametric) local polynomial regression es-
timator @, of a large enough degree g (¢ = 0 leads to a
uniform kernel estimator), stronger properties, such as the
/n-consistency, ||(§, 1///\) — (8, ¥)]l2 = op(n™1/%), can be
obtained (see Truong 1992).

A.2 Consistency of the ARI Bootstrap

As an extension of Thombs and Schucany’s (1990) re-
sult, the following theorem is stated for ARI models:

Theorem 2. Consider the model ¥ (B)(1— B)%e; = q;
with E(a;) = 0and E(|a;|*) < oo for some a > 2. Then
e/ —> e, in distribution when n — oo almost surely;
that is,

lim (Pu(ef <z]|e, .-

. et—n—k—H)
n—00

—Ples <zleyp, ..., et—n—k+1)) =0

almost surely.
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Proof.  An immediate consequence of part (b) of
theorem 3.1 of Thombs and Schucany for the series
Y; = (1 — B)4e¢ is that, for almost every sample path
Yk, oo, Yimuqiqa—i), it is verified that Y — ¥, (in
distribution) when n — 0.

We will prove further that, aimost surely (in the same
sense as before)

E3
Yt+1—k Y1k

Z):‘Z—k s Yt+2_k (A, 1)

Y ‘* Yt

i

in distribution when n — o0.

Observe that e; (respectively e;) can be repre-
sented as a finite linear combination of Yt*an, e,
Y Yiivie, ..., Ye, respectively) and €, g 414, ..., €—g
(for cxample, for k = 2 and d = 3, ¢f = Y 4+ 3Y",
+ 6¢,_2 — 8¢,_3 + 3e;_4), where the coefficients of such
a combination are the same both for e and e,. Note also
that {e; peig, ..., e} and {e_nqit, ., €onpdis
Yi—n+d+i~k» .., Yr—r} generate the same o algebra.
Hence, taking into account the representations of e; and
e¢; and the fact that both random vectors in (A.1) condi-

tionally on e, _n1—g, -+, @r—npd—k, Yemntdrlots-- > ik
have the same distribution as they have conditionally on
Yiwtas1-k, ..., Yi_x, we can assert that ¢f — ¢ (in
distribution) when n — oo along almost every path
{€rntitr - €t}

In the remainder, we prove Expression (A.1). To sim-
plify the notation we consider the case k = 2. Be-

cause the series {¥;} follows an AR(g) model (¥} =
YY)+ -+, Y 4+ ap), itis easy to see that
Yoot Yo = WniYima + -+ Yiegor, (V7 + ¥2)
X Y2+ (Y2 + 930+
+ Wi ¥ Yy e Yi—ga
+ Va1 + ar)
= @Yot Y Ygn, (V] +¥2) Vi
+oe Y Yo + (L Y a
+ (O, Day)
=]+ 1L
In view of the resampling procedure proposed by Thombs
and Schucany (1990),
Y1) = (WY + -+ ¥ Yo, (V72 + 95)
X Yo+ (\01*1@ + W;)Yt—3 +---
+ (T V) Yy VTV Yy
+yiar, +ay)
=T"+ II* 4 1r*
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With I = (Y7 Yig + -+ U Yeeyt, (W72 + ¥ Yia +
e YUY, I = (L) — (1 y))a;y, and
0 = (1, ya_, + ©, Day).

A consequence of theorem 3.1(a) of Thombs and
Schucany (1990) is that, almost surely, (¥}, ..., V) —
W1, ..., ¥y (n P*), and then I* — I (in P*) almost
surely. Besides, because a@;_; and a; are independent
when conditioned to the sample {Y;_,1y_1,..., Y;—2} and

a/ , — a,_1 and ai — a; (both in distribution) aimost

surely (see Freedman 1985), then IT* — O (in P*) and
IIT* — 11 (in distribution) almost surely. Hence the proof
is concluded.

[Received February 1992. Revised February 1995.]
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