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Abstract

This paper establishes a direct connection between a set-valued solution and
a particular singled-valued solution obtained from it. Considering all the
allocations provided by the set-valued solution from a probabilistic point of
view, we define a single-valued allocation, namely, the centroid of the dis-
tribution. Based on that, we present a new solution concept for balanced
games, the core-center, with at least two good properties: it is in the core of
the game and responds to a principle of fairness that leads to an axiomatic
characterization.
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Introduction

In the framework of cooperative game theory there are several solution con-
cepts which gave rise to different ways of dividing the worth of the grand
coalition v(N) among the players. We work on the set of transferable util-
ity games, shortly, TU games. Although solution concepts admit different
classifications, we divide them into two groups: set-valued solutions and
single-valued solutions. Roughly speaking, set-valued solutions provide a set
of outcomes that can be finite, infinite, or even empty. The way to determine
a set-valued solution can be seen as a procedure in which the set of all initial
assignments is gradually reduced, according to specific criteria based on the
desirable properties that a solution should possess, until the final solution
(not necessarily a singleton) is reached. Examples of this type are the sta-
ble sets (von Neumann and Morgenstern (1944)), the core (Gillies (1953)),
the kernel (Davis and Maschler (1965)), the bargaining sets (Aumann and
Maschler (1964)) etc. On the other hand, one can establish some properties
or axioms that determine a unique solution for each game, this is known
as an allocation rule (single-valued solution). The Shapley value (Shapley
(1953)), the nucleolus (Schmeidler (1969)), and the τ -value (Tijs (1981)) are
solutions of this type.

Each solution concept has its interpretation and attends to specific prin-
ciples (fairness, stability...) and all of them enrich the theory of cooperative
games. Besides, there have been many papers discussing on relations between
single-valued solutions and set-valued solutions. Let us just mention a couple
of them: when the core is non-empty, the nucleolus selects an imputation in
it; and for the class of convex games, the Shapley value is in the core.

This work establishes a direct connection between a set-valued solution
and a particular singled-valued solution obtained from it. This is made from
a new angle: given a nonempty set-valued solution and a probability dis-
tribution defined over it, we choose a single-valued solution that inherits a
large number of properties of the set. Precisely, we give a procedure that
selects a unique outcome from a set-valued solution with, at least, two good
features: it is in the convex hull of the set and it responds to some prin-
ciple of fairness if players agree on the probability measure. In particular,
if we consider as the set-valued solution the set of all marginal contribu-
tions vectors with their corresponding weights we obtain the Shapley value.
Besides, recently González-Dı́az et al. (2003) proved that the τ -value (Tijs
(1981)) corresponds to the mean of a distribution defined over the core cover
boundary (the weighted average of the edges of the core cover).

Our first result is a characterization of this single-valued solution in a
general framework, i.e. given a set S, endowed with a probability measure
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we select a specific point in the convex hull of S. Next, we pay special
attention when the set-valued solution is the core of a TU game. A new
solution concept that selects a unique outcome in the core, called the core-
center, is obtained. Easily, one can observe that it satisfies many well known
properties in game theory.

One of our purposes was to introduce a new solution concept for balanced
games that values fairly all the stable allocations selected by the core. In
Maschler et al. (1979) it is showed that the nucleolus can be characterized
as a “lexicographic center”. With that in mind, we decided to study the real
center of the core and we wonder if it has nice game theory interpretations.
From our point of view, the core-center has really interesting properties, at
the one side within the core and at the other one with respect to the core.
For instance, one can say that the core-center is the “point” at which all the
points in the core are balanced. So, it is like an equilibrium point: if one of
the players demands more than the allocation provided by the core-center,
then some player in the game has incentives to say that the allocation is not
being fair with him.

One of the main properties satisfied by the core-center is what we call
the fair additivity property. In the case that we allow to split the original
set in subsets, and then calculate the solution for these subsets in order to
calculate the solution of the original one, our allocation should weigh them
appropriately. There are antecedents on game theory that look for this kind
of fairness. One of the solutions for two persons bargaining problems which
depends on the whole feasible set is the Equal Area Solution. This solution
picks the Pareto optimal point where the area of the individually rational
part of the feasible set above the solution point is equal to the area to the
right of that point. Anbarci and Bigelow (1994) interpreted equal area as
equal concessions. Later Calvo and Peters (2000) looked at the underlying
dynamic process.

The fair additivity property jointly with other more standard properties
in game theory leads to an axiomatic characterization of the core-center. We
would like to point out that there is a certain parallelism with the charac-
terization of the Shapley value using properties of efficiency, dummy players,
symmetry and additivity. First, we prove that there is a unique core alloca-
tion that satisfies core-dependency, anonymity and translation invariance for
simplicial cores. Secondly, we formulate the characterization for elemental
cores by means of a decomposition on simplicial cores, and then we finish the
proof tackling arbitrary cores by making use of the continuity property.

This paper has been organized as follows: in Section 1 we introduce the
preliminary concepts on game theory, Section 2 is devoted to the definitions
of probabilistic solutions, point choice rules and the centroid; In Section 3 we
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pay special attention to the centroid of the core (the core-center) jointly with
its interpretations. Finally, in Section 4 we state the results that characterize
the core-center.

1 Game Theory Background

A transferable utility or TU game G is a pair (N, v), where N = {1, . . . , n}
is a set of players and v : 2N → R is a function assigning to every coalition
S ⊂ N a payoff v(S). By convention, v(∅) = 0.

Let GN denote the set of all TU games with set of players N .

Definition 1. A solution concept is a function (multifunction) which, given
a game G, selects a subset of Rn

ψ : Ω ⊂ GN −→ P (Rn)
G 7−→ ψ(G)

Definition 2. An allocation rule is a function which, given a game G, selects
a vector of Rn

ϕ : Ω ⊂ GN −→ Rn

G 7−→ ϕ(G)

Next, the main properties of allocation rules and solution concepts are go-
ing to be introduced. But before starting with the properties let us introduce
a pair of concepts that are going to be handled during this work.

Given a set B ⊂ Rn, a real number r and a vector α we define the set
rB +α in the following way: rB +α := {x ∈ Rn|x = ry +α for some y ∈ B}
Definition 3. Given a permutation σ ∈ π(N) we can define permutations
of the following concepts:

Coalition: σ(S) := {i ∈ N | ∃j ∈ S such that σ(j) = i} for all S ⊂ N .

Game: Given a game G ∈ GN , σ(G) ≡ Gσ denotes the game (N, vσ) where
vσ(S) = v(σ−1(S)) for all S ∈ 2N .

Point: Given a point x = (x1, . . . , xn), σ(x) = (xσ−1(1), . . . , xσ−1(n)).

Set: σ(B) := {y ∈ Rn | ∃x ∈ B such that σ(x) = y}.
A game can be seen as a vector in R2n

, since it assigns a real value to
each subset of N . An allocation rule is a function which selects a vector in
Rn for each game G. So from now on we will say that an allocation rule ϕ is
continuous if the corresponding function ϕ : R2n → Rn is continuous.
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Definition 4. A player i is said to be dummy in a game G ∈ GN if and
only if

v(S ∪ {i})− v(S) = v({i}) ∀S ⊂ N\{i}
Definition 5. A game G ∈ GN is zero-normalized if and only if

v({i}) = 0, i = 1, 2, . . . , n

Definition 6. Two n-person games G1 = (N, v) and G2 = (N, w) are said
to be Strategic Equivalent, SEQ, if there exist a positive real number r and n
real constants α1, . . . , αn such that, for all S ⊂ N ,

w(S) = rv(S) +
∑
i∈S

αi

An important consequence of the strategic equivalence is that concepts
which are well behaved with regard to this property, can be studied in the
class of zero-normalized games.

Definition 7. An outcome x ∈ Rn is said to be efficient if and only if

n∑
i=1

xi = v(N)

Definition 8. An outcome x ∈ Rn is said to satisfy individual rationality if
and only if

xi ≥ v({i}), ∀i ∈ N

i.e. no player gets less than the profit he can obtain by staying alone.

Definition 9. An outcome x ∈ Rn is said to be reasonable if and only if

xi ≤ ri, ∀i ∈ N

where
ri = max

S | i∈S
(v(S)− v(S\{i}))

i.e. no player gets more than his maximum contribution to any coalition.

Definition 10. An outcome x is stable if and only if

∑
i∈S

xi ≥ v(S), ∀S ( N

i.e. there is no coalition interested in leaving the great coalition
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Definition 11. An allocation rule ϕ satisfies anonymity if given a game G
and a permutation σ ∈ π(N) then, ϕ(Gσ) = σ(ϕ(G)).

Definition 12. An allocation rule ϕ satisfies translation invariance if given
two games G1 = (N, v), G2 = (N,w) and n real constants α1, . . . , αn such
that, for all S ⊂ N ,

w(S) = v(S) +
∑
i∈S

αi

then ϕ(G2) = ϕ(G1) + α.

Definition 13. An allocation rule ϕ satisfies scale invariance if given two
games G1 = (N, v), G2 = (N,w) and real number r such that, for all S ⊂ N ,

w(S) = rv(S)

then ϕ(G2) = rϕ(G1).

Definition 14. An allocation rule ϕ satisfies invariance with regard to
strategic equivalence if it satisfies both translation and scale invariances.

Definition 15. A game G = (N, v) is convex if and only if

v(S ∪ {i})− v(S) ≤ v(T ∪ i)− v(T ), ∀S ⊂ T ⊂ N\{i}

The amount v(S ∪{i})− v(S) is called the i′s marginal contribution to a
coalition S. Convexity says that for all i ∈ N , the i′s marginal contribution
does not decrease as the coalition becomes larger. The set of all n−person
convex games will be denoted by CGn.

Definition 16. Given a game G = (N, v), the preimputations set is defined
by,

I∗(G) = {x ∈ Rn :
∑
i∈N

xi = v(N)}

i.e. the set of all efficient outcomes

2 The Model

This section is devoted to introduce the main concepts we are to use along
this work. They are not standard in the Game Theory literature.
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2.1 Probabilistic-Solutions

Given a TU game G, we can impose some desirable properties that an alloca-
tion rule should satisfy, these properties can be based on stability, fairness...
After this selection procedure we have a set B ⊂ Rn, such that its points are
those who satisfy the chosen properties. Besides, different points may have
distinct weights within B, so we are going to refer to a probabilistic solution
as a subset B of Rn, endowed with a probability distribution.

P(Rn) will denote the set of all probability distributions defined over Rn.
The support of such a probability distribution is defined as the smaller closed
set whose complement has probability zero.

Definition 17. A probabilistic-solution on a non empty collection of games
Ω ⊂ GN is a function:

P : Ω −→ P(Rn)
G = (N, v) 7−→ P(G) ≡ PPG

This definition is a generalization of the usual definition of solution con-
cept. For instance the core of a game can be seen as the uniform distribution
defined over the core itself. An allocation-rule can be seen as a distribution
which assigns probability 1 to a concrete value. Let us denote the set of all
probabilistic solutions with Λ.

Let PG denote the support of P(G). Let us define some elemental prop-
erties that a probabilistic-solution P can satisfy:

Dummy player property: If player i is dummy in game G, then yi =
v({i}) ∀ y = (y1, . . . , yn) ∈ PG.

Anonymity: A probabilistic solution P ∈ Λ satisfies the anonymity prop-
erty iff PPGσ satisfies PPGσ (B) = PPG

(σ−1(B)) ∀σ ∈ π(N) ∀B ⊂ Rn

Efficiency: A probabilistic solution P ∈ Λ has the efficiency property iff∑
yi = v(N) ∀ y ∈ PG

S-Equivalence A probabilistic solution P ∈ Λ is relative invariant with
regard to S-equivalence iff given two games G1 = (N, v) and G2 =
(N, w) which are S-equivalent through the real number r and the vector
α we have:

PPG1
(B) = PPG2

(rB + α) ∀B ⊂ Rn

As a consequence of this definition PG2 = rPG1 + α.

All these properties are natural extensions of the properties of the solution
concepts.
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2.2 Point-choice rules

Definition 18. A point-choice rule on a nonempty collection Υ ⊂ Λ of
probabilistic-solutions is a function which, given a probabilistic-solution of Υ
and a game G, selects a single allocation:

X : Υ× Ω −→ Rn

(P, G) 7−→ X(P(G))

Let us enumerate some basic properties a point-choice rule X could satisfy
with regard to a probabilistic-solution P:

Dummy player property: If player i is dummy in PG, then:

Xi(P(G)) = qi

(i is dummy in B ⊂ Rn if there exists qi such that yi = qi ∀y ∈ B)

Anonymity: A point-choice rule X satisfies the anonymity property with
regard to a probabilistic-solution P iff

X(σ(P(G))) = σ(X(P(G))) ∀σ ∈ π(N)

Set consistency: A point-choice rule X satisfies set-consistency with regard
to a probabilistic-solution P iff

X(P(G)) ∈ Conv(PG)

Translation and scale invariance (TSI) A point-choice rule X satisfies
TSI with regard to a probabilistic-solution P iff for a given game G, for
every real number r and for every vector α:

X(rP(G) + α) = rX(P(G)) + α

Lemma 1. The composition of a probabilistic-solution and a point-choice
rule is an allocation rule.

Now we are going to see the properties an allocation rule ϕ = X ◦ P
obtained in this way satisfies depending on the properties of the probabilistic-
solution P and point-choice rule X which originate it.

P X ϕ
Dummy P. prop. + Dummy P. prop. ⇒ Dummy P. prop.

Anonymity + Anonymity ⇒ Anonymity
Efficiency + Set consistency ⇒ Efficiency

S-Equivalence + TSI ⇒ S-Equivalence
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2.3 The Centroid

This section proposes a natural procedure to continue with that started in
the previous section. Once we have a probability distribution defined on Rn,
what to do if we want to select a single allocation? Our proposal in this
section is to choose the center of gravity of the distribution.

Definition 19. Given a probabilistic-solution P, and a game G, the Centroid
Θ is the point-choice rule defined in the following way:

Θ(P(G)) = E(P(G)) = E(PPG
)

where E(P) denotes the expectation of the probability distribution P. The
centroid corresponds with the center of mass or center of gravity of PG.

Lemma 2. Given a probabilistic-solution P, the centroid satisfies dummy
player property, anonymity, set consistency and TSI with regard to P.

Proof. All these properties are a consequence of the properties of the expec-
tation of a probability distribution.

Now we are going to introduce a new property which reinforces the elec-
tion of the centroid as point-choice rule.

Given an allocation x and a player i, let Bi(x) denote the set of all allo-
cations which are worse for him than x, and Ai(x) is the set of all allocations
which are preferred for i to x:

• Bi(x) := {y ∈ Rn | yi < xi}
• Ai(x) := {y ∈ Rn | yi > xi}
• We also define Ei(x) := {y ∈ Rn | yi = xi}
We can also weigh how “good” or “bad” these allocations are for a player

i by means of the distance between the corresponding values on the ith
coordinates, i.e. this weight takes in account how bad or good the point is
according to the profits it involves for player i. For the sake of notational
commodity, the following concepts are going to be introduced considering
that the probability distributions P are continuous, but everything could be
rewritten for arbitrary distributions.

Let P be a probabilistic solution, given an outcome x and a player i,
we are going to consider that the relevance (weight) for player i of a point
y ∈ Rn with regard to x, is the weight of the point according to P but
re-scaled proportionally to |xi − yi|.
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Definition 20. Given a probability distribution P with density function f ,
an outcome x is said to be fair for player i with regard to P if and only if∫

Bi(x)

(xi − yi)f(y)dy =

∫

Ai(x)

(yi − xi)f(y)dy

An allocation x is fair for a player i if, the total weight of the points in
Ai(x) coincides with that of the points in Bi(x).

Definition 21. Given a probabilistic solution P, an outcome x is said to be
admissible for player i with regard to P if and only if∫

Bi(x)

(xi − yi)f(y)dy ≥
∫

Ai(x)

(yi − xi)f(y)dy

The idea of these concepts is that a player can object to an allocation
such that he feels that the relevance of Ai(x) is more than the one of Bi(x).

Definition 22. An allocation rule defined on a subset Ω ⊂ GN is said to be
fair (admissible) with regard to a probabilistic solution P if it is fair (admis-
sible) for all players with regard to P for every game in Ω.

Lemma 3. Given a probabilistic solution P the unique allocation rule which
is fair (admisible) with regard to P is the Centroid of P.
Proof. This Lemma is an immediate consequence of the properties of the
center of gravity. Let us see how to prove it in probabilistic terms. Let us
denote E(P(G)) by ȳ and let x be an allocation in Rn, we want to show that,
for every game G

∫

Bi(x)

(xi − yi)f(y)dy =

∫

Ai(x)

(yi − xi)f(y)dy ⇔ xi = ȳi ∀i ∈ N

note that

∫

Rn

(xi − yi)f(y)dy = xi

∫

Rn

f(y)dy −
∫

Rn

yif(y)dy = xi − ȳi

but also

∫

Rn

(xi − yi)f(y)dy =

∫

Bi(x)

(xi − yi)f(y)dy −
∫

Ai(x)

(yi − xi)f(y)dy

since
∫

Ei(x)
(xi − yi)f(y)dy = 0, so

∫

Bi(x)

(xi − yi)f(y)dy =

∫

Ai(x)

(yi − xi)f(y)dy, ∀i ∈ N ⇔ xi = ȳi
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3 The Core-Center

3.1 The core and its relatives

We introduce now the notion of core a game (Gillies (1953)) as well as the
notion of strong ε-core; both of them are based on efficiency and stability.
A point x ∈ Rn is said to be stable if there is no coalition S such that∑

i∈S xi < v(S), analogously it is ε-stable if there is no coalition S such that∑
i∈S xi < v(S)− ε.

Definition 23. The core of a game G, denoted by C(G) is the set of all
efficient and stable outcomes

C(G) := {x ∈ Rn|
∑
i∈S

xi ≥ v(S) ∀S ( N,
∑
i∈N

xi = v(N)}

Definition 24. Let ε be a real number. The strong ε-core of a game G,
denoted by Cε(G) is the set of all efficient and ε-stable outcomes:1

Cε(G) := {x ∈ Rn|
∑
i∈S

xi ≥ v(S)− ε ∀S ( N,
∑
i∈N

xi = v(N)}

By definition, when ε = 0, C0(G) ≡ C(G).

Definition 25. The least core of the game G = (N, v), denoted by LC(G)
is the intersection of all nonempty strong ε-cores. Equivalently, let ε0(G) be
the smallest ε such that Cε(G) 6= ∅, then LC(G) = Cε0(G)(G).2

3.2 The ε-cores as probabilistic solutions

If we have chosen an ε-core in accordance with the ε-stability and the effi-
ciency, there is no reason to put different weights to its points so from now
on we are going to denote by C, LC, and Cε the core, least core, and ε-core
respectively but endowed with the uniform distribution, i.e. in what follows
they are going to be treated as probabilistic solutions.

Lemma 4. Given ε ∈ R, the probabilistic-solution Cε satisfies anonymity,
efficiency and S-Equivalence. Besides, when ε = 0, C also satisfies dummy
player property.

1Weak ε-cores are not going to be used, so there will be no ambiguity with this notation.
2In Maschler et al. (1979) the ε0(G) is introduced in such a way that it is straightforward

to check that it is well defined, i.e. it exists and it is unique.
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Proof. All these properties are an immediate consequence of the definitions.

The strategic equivalence property is quite useful, since it allows us to
work with 0-normalized games whenever we need to.

Once we have introduced the core we can define some other related con-
cepts:

Definition 26. An allocation rule ϕ is said to be core-dependent iff
core(G) = core(G′) ⇒ ϕ(G) = ϕ(G′).

This property, even though not being very strong, is quite meaningful.
For instance the nucleolus, which is always in the core when this is nonempty,
does not satisfy core-dependency. Different games with the same core may
have different nucleolus. The point is that redundant restrictions are useless
for core-dependent allocation rules, but not necessarily for the remaining
ones.

For any game G = (N, v) let us introduce the family of “shifted” games3

Gε = (N, vε) defined by:

vε(S) =

{
v(S) if S = ∅, N
v(S)− ε if S 6= ∅, N

3.3 Some Geometrical Considerations

We need to introduce some notation and make some considerations regarding
the underlying geometry of a TU game. We denote the efficient hyperplane
with HE, so HE ≡ {x ∈ Rn | ∑

i∈N xi = v(N)}. All the sets we consider
in this paper are contained in HE and this implies that all our framework is
going to be developed in an n− 1 dimensional euclidean space.

Definition 27. A convex polytope P is the convex hull conv(V ) of a set
of points V = {x1, . . . , xs} in Rn, equivalently it is a bounded subset of Rn

which is the intersection of a finite set of halfspaces.

It is straightforward to check that the core of a game, when non empty,
is a convex polytope (it is the intersection of halfspaces in HE). From now
on we are going to omit the word “convex” because we are only going to deal
with such polytopes.

Definition 28. An n-polytope is a polytope which lies in an n-dimensional
space but there is no (n− 1)-dimensional space containing it.

3This concept has also been taken from Maschler et al. (1979)
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Lemma 5. Except for the least core, all nonempty strong ε-cores are n-1-
polytopes. The least core is always an m-polytope with 1 ≤ m ≤ n− 2.

Proof. The statement in this lemma has been taken from Maschler et al.
(1979) so we are not going to prove it. Anyway, not being a completely
straightforward result it is quite intuitive.

3.4 The Core-Center

Definition 29. Given ε ∈ R, the composition of the probabilistic solution
Cε and the centroid Θ is an allocation rule called the ε-core-center and it is
denoted by µε.

We are going to pay special attention to the core-center µ, (i.e. the 0-core-
center, µ0). The class of games with nonempty core is the class of balanced
games BG:

µ : BG −→ Rn

G = (N, V ) 7−→ Θ(C(G)) = µ(G)

Before going on, let us give a pair of interpretations for this new allocation
rule. The core of a game can be thought as a system of particles. Attending
to the law of mass conservation, the mass of a body is

∫
dm = M. In physics,

the center of mass is a fundamental concept because it allows to simplify the
study of a complex system just by taking its center of mass. The movement of
a body can be analyzed by describing the movement of its center of mass. In
practice, the center of mass behaves just like a single particle. Furthermore,
to know the position of the center of gravity one can study the symmetries of
the particles distribution. If there are axis or planes of symmetry, the center
of mass will be on that axis or plane, and if there is a center of symmetry,
that point will be exactly the center of mass. Other interesting property
of the center of mass or center of gravity is the independence of the chosen
reference system.

If one assumes that the body is homogeneous, that is, there is a uniform
density ρ over all the points, then dm = dV . Informally, we can say that dV
is the volume of an element of mass and

−→cG =

∫
ρ−→r dV∫
ρdV

=

∫ −→r dV

V

where V is the volume of the body. Roughly speaking, the core-center µ
is the unique point in the core such that all the allocations in the core are
balanced with respect to it.
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Another interpretation comes from statistics. The core of a game (assum-
ing that it is nonempty) provides all the allocations such that no subcoalition
has incentives to go away and form a separate group. So if we define a uniform
distribution over the points in the core, then,

µ(N, v) = E[C] where C ∼ U(C(N, v))

So, the core-center is the expectation of a uniform distribution on the
core.

Now we are going to introduce a new property, the “fair additivity”.
This property arises from the following idea; let us consider a game G and
a player i. What happens to the core of the game if we allow player i to
change, no matter how, the value v({i}) for a new one up to his choice
within the interval [v({i}),∞)? In most of the cases this selection will lead
to a new core, contained in the previous one (the restriction xi ≥ v({i}) will
be replaced by a stronger one). Once this player has made his choice, he
has divided the original game G in two new games G1 and G1 such that the
union of its cores is the core of the original game and their intersection has
null measure. We say that fair additivity holds for an allocation rule ϕ if the
solution of the original game is a weighted average of the solutions of the two
subgames, where the weights depend on the size of the respective cores. We
assert that this property has a taste of fairness as far as neither profit nor
loss could be obtained by any player through this changes.

¡
¡

¡µ

@
@

@R

G G1 −→ x3 ≥ k

G1 −→ x3 ≤ k

(x1 + x2 ≥ v(N)− k)

3

21

Figure 1: Example of a cut in a three players game
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Definition 30. Given a game G = (N, v), a player i, and a real number
k ≥ v({i}). A cut on the game G for player i at height k is denoted by
χi

k(G) and defined as a pair of games {G1, G1} such that:

G1 = (N, v1), v1(S) =

{
v(S) if S 6= {i}
k if S = {i}

G1 = (N, v1), v1(S) =

{
v(S) if S 6= N\{i}
max{v(S), v(N)− k} if S = N\{i}

The following lemma explains why this is called a “cut”.

Proposition 1. Let G be balanced game, a cut χi
k(G) = {G1, G1} has the

following properties:

i. core(G1) ∪ core(G1) = core(G).

ii. If core(G) is a s-polytope and core(G1)∩ core(G1) 6= ∅ then it lies in a
m-dimensional space with m < s (it has volume 0 in core(G)).

Proof. A cut χi
k(G) on the core of a game consists in taking the hyperplane

xi = k which cuts it in two pieces (one of them can be empty if the hyperplane
does not intersect the core). Once this consideration has be made the result
has nothing to prove.

So note that a cut of a game G defines a unique cut on its core, therefore
the expression cut is going to be used to refer to both cuts on games and
cuts on cores. Given a cut χi

k and a collection G of games, χi
k(G) consists

in cutting successively all the cores of the games in G with the hyperplane
xi = k. So χi

k({G,G′, G′′, . . . }) = {G1, G1, G
′
1, G

′
1, G

′′
1, G

′′
1, . . . }.

Definition 31. Given the probabilistic-solution C, and a point-choice rule
X. The allocation rule ϕ = X ◦ C satisfies Fair Additivity with regard to
the core iff, for every game G, and for every cut χi

k(G) = {G1, G1} we have:

ϕ(G1)PCG
(C(G1)) + ϕ(G1)PCG

(C(G1)) = ϕ(G)

Lemma 6. The core-center satisfies the following properties
- Dummy player property - Efficiency
- Individual rationality - Core Dependency
- Reasonability - Invariance under Strategic Equivalence
- Stability - Fair additivity with regard to the core
- Anonymity

15



Proof. All of them are straightforward either because they are inherited from
core properties or because they are a consequence of the properties of the
center of gravity.

Some other properties could have been stated, for instance, one could miss
some monotonicity property (core-center will also have good monotonicity
properties). They are not going to be used in the characterizations so we
prefer to avoid introducing more notation.

4 The characterization

Now a characterization is provided for the core-center using standard prop-
erties in the literature of TU games.

• Remark: As a direct consequence of Lemma 3 it is straightforward
to check that the unique allocation rule which is fair (admissible) with
regard to C is the core-center.

Now let us state the main theorem in this paper;

Theorem 1. Given a balanced game G, there is a unique allocation rule ϕ
which lies inside the core satisfying:

• Continuity

• Core-dependency

• Anonymity

• Translation Invariance

• Fair Additivity with regard to the core

And this allocation rule is the core-center.

Remark: Note that this solution is also going to satisfy efficiency and
stability because it is inside the core.

From now on we assume (without loss of generality) that there are no
dummy players. If there is a dummy player i, we know (because of stability
and efficiency) that he will receive v({i}) in all the points of the core, now
using the core dependency of the allocation rule we know that ϕi(G) = v({i}).
So we can forget about the player i and work with the core of the game
G′ = (N\{i}, v′) where v′ is v restricted to N\{i}. So we consider a game G
with no dummy players.

16



Let TG denote the subclass of games in which the five properties of
Theorem 1 characterize the core-center. The proof of Theorem 1 will be
focused in show that TG = BG.

Now we provide an outline of the proof with the main steps in which we
are going to divide it:

Step 1 This first phase consists in showing that the core-dependency, the
anonymity and the translation invariance characterize the core-center
when the core is simple enough.

Step 2 Next we show that the previous properties along with the fair additivity
characterize the core-center for a wider class of games.

Step 3 Finally, making use of the previous results and the continuity property
we show that the core of a balanced game can be approximated as
much as we want with cores of games of the former class, and the
result is derived. In the first two steps we assume that the core is an
(n− 1)-polytope and we only deal with the degenerate case in the last
step.

4.1 A simplicial core

This subsection is devoted to show that when the core is simple enough
its centroid, the core-center can be characterized using all the properties of
theorem 1 but the continuity and the fair additivity.

Definition 32. A set {a0, a1, . . . , an} in Rn is said to be geometrically inde-
pendent if for any scalars ti ∈ R, the equations

n∑
i=1

ti = 0 and
n∑

i=1

tia
i = 0

imply that t0 = t1 = · · · = tn = 0. Note that {a0, a1, . . . , an} is geometri-
cally independent if and only if the vectors a1 − a0, . . . , an − a0 are linearly
independent.

Definition 33. Let {a0, a1, . . . , an} be a geometrically independent set in Rn.
The n-simplex Sn spanned by a0, a1, . . . , an is the set of all points x of Rn

such that

x =
n∑

i=1

tia
i where

n∑
i=1

ti = 1 and ti ≥ 0, ∀i

17



Each ai is a vertex of the n-simplex. The numbers ti are the barycentric
coordinates for x of Sn with respect to a0, a1, . . . , an.The subscript of Sn is
the dimension of the simplex. An n-simplex is regular if the distance between
any two vertices is constant.

Definition 34. The centroid, or barycentre, of an n-simplex Sn spanned by
a0, a1, . . . , an is

Θ(Sn) =
n∑

i=0

ai

n + 1

When working with TU games, there is a regular simplex which play an
important role. Given an n-player’s game G:

• I(G) = {x ∈ Rn | ∑
xi = v(N), xi ≥ v({i}) ∀i ∈ N} denotes the set of

imputations of the game G.

It is a well known result that I(G) is indeed a regular (n − 1)-simplex.
When working with the core, the restrictions play a very important role, so
we are going to introduce some notation regarding them. All the restrictions
are going to be of the following type, given a coalition S ⊂ N : RS ≡ {x ∈
Rn | ∑

i∈S xi ≥ v(S)}. We say a player i is involved in a restriction RS

iff i ∈ S. Let RS be a restriction, and q = |S|, the number of players of
coalition S, then we say that RS is a q-restriction. There are two special
types of restrictions; the 1-restrictions and the (n− 1)-restrictions which are
going to be called elemental restrictions. We say a restriction is redundant in
the core if removing it does not affect the core. Conversely, the restrictions
which are not redundant ones are going to be called active restrictions. If
all the active restrictions of the core of a game are elemental restrictions,
we refer to it as an elemental core. Note that these restrictions are going
to be studied in the n − 1 dimensional space HE obtained from applying
the efficiency condition

∑
i∈N xi = v(N). Let HS denote the hyperplane

corresponding to the restriction RS, i.e. x ∈ HS ⇔
∑

i∈S xi = v(S). Note
that because of the efficiency condition, the hyperplane HS has dimension
n− 2.

Lemma 7. Given a non empty coalition S 6= N the hyperplanes HS and
HN\S are parallel in HE.

Proof. We are going to show that given a hyperplane H :=
∑

i∈S xi = k1 in
HE, then there exists k2 such that H can be also expressed as

∑
i∈N\S xi = k2.

This is stronger than the statement of this lemma, so once this is proved the
result is obtained. We are working in HE so we know:

18



∑
i∈N xi = v(N) ⇒ ∑

i∈S xi +
∑

i∈N\S xi = v(N). If we impose the

condition
∑

i∈S xi = k1 we have k1 +
∑

i∈N\S xi = v(N) ⇒ ∑
i∈N\S xi =

v(N)− k1 = k2.

Remark: As a consequence of the last lemma we can write an (n − 1)-
restriction

∑
j∈N\{i} xj ≥ ki in the following way: xi ≤ v(N) − ki. So these

kind of restrictions are also going to be referred to as (n− 1)-restrictions.

Definition 35. Given a game G, if A is the set of active restrictions we
have two special cases:

• A = {xi ≥ v({i}) | i ∈ N} ={all 1-restrictions} In this case the core is
called up-simplex.

• A = {∑j 6=i xj ≥ v({N\{i}}) | i ∈ N} ={all (n − 1)-restrictions} The
core is called down-simplex.

Proposition 2. If the core C of a game is either an up-simplex or a down-
simplex then it is a regular simplex.

Proof. We are going to study the two cases separately:

Up-simplex: When the core is an up-simplex it coincides with the set of
imputations, and it is a well known result that I(G) is a regular simplex.
The n vertices of I(G) are the points

ui = (v({1}), v({2}), . . . ,
i︷ ︸︸ ︷

v(N)−
∑

j 6=i

v({j}), . . . , v({n})) i ∈ N

If we consider the translation C ′ = C + t where t is the vector
(−v({1}), . . . ,−v({n})). The vertices of C ′ are the points

ûi = (0, 0, . . . ,

i︷ ︸︸ ︷
v(N)−

∑
j∈N

v({j}), 0) i ∈ N

Down-simplex: 4 We know that the core is a (n−1)-polytope, so it is going
to have at least n points.5 We also know that a vertex of the core must

4Once the case of the up-simplex has been proved, we could proceed in a more geomet-
rical way, using the parallelism relations between the faces of the up-simplex and those
in the down-simplex, we can apply similarity results to obtain that the down-simplex is
indeed a simplex which besides is regular.

5If it has only k vertices with k < n, the affine hull of these k points lies in a k-1
dimensional space and contains the core (the convex hull), and this contradicts the fact
that the core is a (n− 1)-polytope.
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be the intersection of n− 1 hyperplanes, as we have n hyperplanes we
can consider n different subsets of A, each of them containing n − 1
hyperplanes. So the core has, at most, n vertices. This consideration
along with the former one leads to a total number of n vertices in the
core. Let us calculate these points when we have 4 players:

d1 = H1,2,3 ∩H1,2,4 ∩H1,3,4 ∩HE

H1,2,3 : x1 + x2 + x3 = v({1, 2, 3}) ⇒ x1 = v({1, 2, 3})− x2 − x3

H1,2,4 : x1 + x2 + x4 = v({1, 2, 4}) ⇒ x1 = v({1, 2, 4})− x2 − x4

H1,3,4 : x1 + x3 + x4 = v({1, 3, 4}) ⇒ x1 = v({1, 3, 4})− x3 − x4

HE : x1 + x2 + x3 + x4 = v(N)

If we combine the equation H1,2,3 with HE we obtain:

v({1, 2, 3})−x2−x3 + x2 + x3 + x4 = v(N) ⇒ x4 = v(N)− v({1, 2, 3})

If we use the rest of the equations we obtain xi = v(N) − v(N\{i})
when i 6= 1 and x1 =

∑
i6=1 v(N\{i})−2v(N). When we have n players,

the procedure is the same and we obtain the following extreme points:

di = (di
1, d

i
2, . . . ,

i︷ ︸︸ ︷∑

j 6=i

v(N\{j})− (n− 2)v(N), . . . , di
n) i ∈ N

And di
j = v(N)− v(N\{j}) for all j 6= i.

If we consider the translation C ′ = C + t where t is the vector
(v(N\{1})− v(N), v(N\{2})− v(N), . . . , v(N\{n})− v(N)). The ver-
tices of C ′ are the points:

d̂i = (0, 0, . . . ,

i︷ ︸︸ ︷∑
j∈N

v(N\{j})− (n− 1)v(N), 0) i ∈ N

And this clearly constitutes a regular simplex.

Proposition 3. If the core C of a game G is an up-simplex and ϕ is an
allocation rule which lies in the core and satisfies core-dependency, anonymity
and translation invariance then ϕ(G) is the centroid of the simplex.
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Proof. Let us calculate the value this allocation rule selects in the game
G′ = G + t where t = (−v({1}), . . . ,−v({n})).

The core of the game G′ is the simplex C ′, and its vertices are the
n points ûi calculated in Proposition 2, and this game G′ satisfies that
core(σ(G′)) = σ(C ′) = C ′ for all σ ∈ π(N) i.e. all the players are symmetric.
This property of the game G′ along with the anonymity property and the
core-dependency implies that ϕ(G′) = σ(ϕ(G′)) for all σ ∈ π(N) and this
leads to the fact that there exists a constant k such that ϕ(G′) = (k, . . . , k).
The value for this k is:

v(N)−∑
j∈N v({j})
n

, so ϕ(G′) =
n∑

i=1

ûi

n
,

the centroid of the simplex C ′.
If we use the translation invariance, we obtain that ϕ(G) = ϕ(G′)− t, the

centroid of the simplex C.

Proposition 4. If the core C of a game G is a down-simplex and ϕ is an
allocation rule which lies in the core and satisfies core-dependency, anonymity
and translation invariance then ϕ(G) is the centroid of the simplex.

Proof. This proof is completely analogous, we only need to use the vector
t = (v(N\{1})−v(N), v(N\{2})−v(N), . . . , v(N\{n})−v(N)) for the trans-
lation.

Corollary 1. If G is a game such that core(G) is either an up or down-
simplex then G ∈ TG.

4.2 An elemental core

Now we are going to combine the results in propositions 3 and 4 with the fair
additivity property to show that a game G with an elemental core belongs
to TG.

Let us illustrate what we are going to do with an example when the game
has only three players, all the restrictions are therefore elemental restrictions
(figure 2).

I the game in this example we see that the core is inside the imputations
set, which is a simplex. Besides, it divides I(G) into the sets T i, which are
also simplices. If we consider the game G′ = (N, v′) which differs from G
in the fact that v′(12) = v′(13) = v′(23) = 0, it is straightforward to check
that core(G′) = I(G), if we consider now the cut χ1

v(23)(G
′) we obtain two

games G1, G2 such that core(G2) = T 1. We can continue now cutting the
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x3 = v(N)− v(12)

x1 = v(N)− v(23)
x2 = v(N)− v(13)

T 1 T 2

T 3

Figure 2: Example of a three players game

game G1 with χ2
v(13)(G1) obtaining G3, G4 such that core(G4) = T 2. Finally

cutting G3 with χ3
v(12)(G3) we obtain G5, G6 in such a way that core(G5) =

core(G) (furthermore G5 = G) and core(G6) = T 3. Suppose now that ϕ is
an allocation rule fulfilling the assumptions in Theorem 1. Using the fair
additivity property we can write:

ϕ(G′) = ϕ(G1)
V ol(G1)
V ol(G′) + ϕ(G2)

V ol(G2)
V ol(G′)

ϕ(G1) = ϕ(G3)
V ol(G3)
V ol(G1)

+ ϕ(G4)
V ol(G4)
V ol(G1)

ϕ(G3) = ϕ(G5)
V ol(G5)
V ol(G3)

+ ϕ(G6)
V ol(G6)
V ol(G3)





⇒

⇒ ϕ(G′) = ϕ(G2)
V ol(G2)

V ol(G′)
+ϕ(G4)

V ol(G4)

V ol(G′)
+ϕ(G5)

V ol(G5)

V ol(G′)
+ϕ(G6)

V ol(G6)

V ol(G′)

⇒ ϕ(G5) = ϕ(G′)
V ol(G′)
V ol(G5)

−ϕ(G2)
V ol(G2)

V ol(G5)
−ϕ(G4)

V ol(G4)

V ol(G5)
−ϕ(G6)

V ol(G6)

V ol(G5)

Now, as the cores of the games G′, G2, G4, and G6 are simplices, using
propositions 3 and 4 we have completely determined ϕ(G5); G5 = G ⇒
ϕ(G5) = ϕ(G). So for this game G, an allocation rule is completely deter-
mined if it satisfies the five properties of Theorem 1.

The next part of this subsection is devoted to formalize and generalize the
procedure described in the previous example. From now on, in order to make
the proof more readable we going to refer indifferently to a games and cores
and we are going to cut either the cores or the games. Having been assumed

22



core-dependency, this change of notation is not a problem; if an allocation
rule has been characterized for a game G, and the game G′ has the same
core than the game G, then the former allocation rule is also characterized
for this new game. Besides, we are also going to say that a core C belongs to
TG if a game such that C is its core does. Note that we also use V ol to refer
to the measure of the core of a given game, this leads to a more bearable
notation. This change of notation is not a problem, in fact, fixed an initial
game G and its core C we can write PCG

(C ′) = vol(C′)
vol(CG)

for a given C ′ ⊂ C.

Definition 36. Let C0 be the core of a game G0, we define a cuts decompo-
sition of the game G0 and its core C0, ∆G0 = {G, C,X} as follows:

• A sequence G = (G1, . . . , Gm) of games.

• A sequence of cores: C = (C1, . . . , Cm) such that Cj = core(Gj) for all
j ∈ {1 . . . m}.

• A sequence X = (χ1, . . . , χm−1) of cuts defined in the following way:

– χ1 defines a cut {G0
, G0} in the game G0, such that G

0 ≡ G1.

– If χi defines a cut {G,G} then G ≡ Gi and χi+1 defines a cut in
G.

– Finally if χm−1 defines a cut {G,G} then G ≡ Gm−1 and G ≡ Gm.

It is straightforward to check that this defines a decomposition of the game
G0 and its corresponding core C0, i.e.

⋃m
i=1 Ci = C0 and V ol(

⋂m
i=1 Ci) = 0.

Lemma 8. If ϕ is an allocation rule satisfying fair additivity with regard to
the core and ∆G = {G, C,X} is a decomposition of a game G then:

ϕ(G) =

∑
Gj∈C ϕ(Gj)V ol(Cj)

V ol(C)

Proof. Trivial from the definition of the fair additivity property and the
definition of decomposition.

Lemma 9. Given a game G = (N, v) and a player i ∈ N :

xi ≥ v̄({i}) :=
∑

j 6=i

v(N\{j})− (n− 2)v(N) for all x ∈ core(G).
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Proof. Let us take a point x ∈ core(G). Because of the core restrictions we
have

∑
k 6=j xk ≥ v(N\{j}), this condition along with the efficiency condition∑

k 6=j xj = v(N)− xj leads to xj ≤ v(N)− v(N\{j}) for all j 6= i, and this
implies that ∑

j 6=i

xj ≤ (n− 1)v(N)−
∑

j 6=i

v(N\{j}),

using again the efficiency condition
∑

j 6=i xj = v(N)− xi we obtain:

xi ≥
∑

j 6=i

v(N\{j})− (n− 2)v(N)

This lemma allows us to define mi := max{v({i}), v̄({i})} as a kind of
minimum right for every player i in a game G = (N, v). Based on this vector
m we can also define a restricted set of imputations in the following way:
I(G) = {x ∈ Rn | ∑

xi = v(N), xi ≥ mi ∀i ∈ N}. By definition of the mi,
core(G) ⊂ Ī(G).

The following lemma formalizes the result which was implicit in the three
players example of figure 2.

Lemma 10. Let G be a game and C its core. If there exists a decomposition
∆Ī(G) = {G, C,X} of Ī(G) such that C ∈ C and for all Cj ∈ C different from
C, Cj ∈ TG then it implies that C ∈ TG.

Proof. Using lemma 8, ϕ(G)V ol(C) =
∑

Gj∈C ϕ(Gj)V ol(Cj). Let Ck be the
element of C such that Ck = C now, isolating ϕ(Gk) we obtain:

ϕ(Gk) =
ϕ(Ī(G))V ol(Ī(G))−∑

Gj∈C,j 6=k ϕ(Gj)V ol(Cj)

V ol(Ck)

where ϕ(Ī(G)) denotes the value that ϕ selects for any game such that its
core coincides with Ī(G).

Provided that Ī(G) and all Cj ∈ C different from C belong to TG, we can
conclude that C ∈ TG.

Before going on we need to introduce a little more notation. Given a
game G = (N, v) let us define the following sets:

T := {x ∈ HE | xk ≥ mk ∀k ∈ N}
T i := {x ∈ HE | xi ≥ v(N)− v(N\{i}) ; xk ≥ mk ∀k ∈ N\{i}}
T ij := {x ∈ HE | xl ≥ v(N)− v(N\{l}), l = i, j ; xk ≥ mk ∀k ∈ N\{i, j}}
...

T I := {x ∈ HE | xi ≥ v(N)− v(N\{i}) ∀i ∈ I ; xk ≥ mk ∀k ∈ N\I}
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Lemma 11. These sets satisfy the following properties:

• T ≡ Ī(G).

• Given a set I ⊂ N and two sets A,B such that A ∪ B = I it verifies
that T I ≡ TA ∩ TB, and consequently T I ≡ ⋂

i∈I T i.

• All these T I are up-simplices, so if the core of a game coincides with
some of these sets then it belongs to TG.

• TN\{i} if nonempty coincides with {y}, being y the point such that
yi = mi and yj = v(N) − v(N\{j}) for all j 6= i. Furthermore, it
is only going to be empty when mi > v({i}). This property is just a
consequence of the definition of mi.

• TN = ∅, this is derived from the previous property.

Proof. All these properties are very easy to check using the restrictions which
originate each T I .

Lemma 12. If the game G has an elemental core C, then C = Ī(G)\⋃n
i=1 T i.

Proof. Removing T i from Ī(G) is equivalent to introduce in it the restriction
xi ≤ v(N) − v(N\{i}) which is also equivalent to the restriction

∑
j 6=i xj ≥

v(N\{i}). Once this remark has been done, there is nothing else to proof.

Now one could try to combine lemmas 10 and 12 to obtain, given a game
G with an elemental core, an appropriate decomposition the set Ī(G). This
is indeed the idea of what remains to be done to show that all the elemental
cores are in TG. But there is a question which still needs to be solved, the
pairwise intersections of the T i are not necessarily empty and this will make
the proof of the next proposition a little bit harder.

Proposition 5. Let G = (N, v) be a game and C its core. If C is an elemental
core, then there exists a decomposition ∆Ī(G) = {G, C,X} of Ī(G) such that
C ∈ C and for all Cj ∈ C different from C, Cj ∈ TG.

Proof. Let m be the vector with components mi := max{v({i}), v̄({i})}. Let
G0 be the game with characteristic function:

v0(S) =





mi S = {i}, i ∈ N
0 1 < |S| < n
v(N) S = N

By definition core(G0) = Ī(G). Let ∆Ī(G) = {G, C,X} be a decomposition
such that:
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• G = (G
1
, G

2
, . . . , G

n
, Gn)

• C = (C1
, C2

, . . . , Cn
, Cn)

• X = (χ1
k1

(G0), χ2
k2

(G1), . . . , χi
ki

(Gi−1), . . . , χn
kn

(Gn−1)), and for each player

i, ki = v(N)− v(N\{i}) and χi
ki

(Gi−1) = {Gi
, Gi}

It is straightforward to check that Cn = C so we need to show that G
i ∈ TG

for all i ∈ N .

T 1

T 1 T 1

T 12 T 12

T 2 T 2

T 13 T 23

T 3

Figure 3: First steps of the decomposition with 4 players

Let us explain the idea of this decomposition; We begin with the set Ī(G),
after the cut χ1

k1
(G0) we have divided it in T 1 and Ī(G)\T 1 = C1, the core

of the game G1. Now we introduce a second cut χ2
k2

(G1), splitting Ī(G)\T 1

in two new sets, T 2\T 12 and C1\T 2, note that the first of these last two
sets is not going to be T 2 because T 1 ∩ T 2 was removed with the first cut.
Now we need to make the third cut and so on, but at every step we need to
take care of the common parts of the T i which can have already been drawn
from Ī(G). These comments allow us to write down the relationship between
the sets Cj of the decomposition and the T i; Ci = T i\⋃

i<j T ij. So if we

want to prove that Ci ∈ TG we should find an appropriate decomposition
of T i in elements of TG. This is nearly the same question we are trying
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to solve in this proposition, but a little bit easier. Let us explain what is
going on; initially we were trying to decompose Ī(G) using the T i, and the
problem was that these simplices, even though all of them belong to TG,
not necessarily are going to have empty intersections. In order to solve that
issue we have found a new one which, once solved will imply the solution of
the previous one. In this new problem we have again that the intersection
of the T ij may be nonempty, so we need to use the T kij and we obtain
Cij = T ij\⋃

k<i T
kij. So we obtain again a new problem similar to the first

one. Continuing with this procedure, there will be a moment in which we
need to show that CI = T I\⋃

j<min{i | i∈I} T I∪{j} where |I| = n − 1 belongs

to TG, but this step is straightforward, using lemma 11, as |I ∪ {j}| = n
we know that T I∪{j} is empty, i.e. CI = T I , and T I ∈ TG because it is a
point6. Now using that CI ∈ TG for all I such that |I| = n− 1 we have that
CJ ∈ TG if |J | = n−2. Now, walking backwards till the first step we obtain
that the Ci belong to TG for all i ∈ N , so C ∈ TG.

Corollary 2. Let G be a game and C its core. If C is an elemental core then
G ∈ TG.

Proof. This corollary is just a consequence of combining Proposition 5 with
Lemma 10.

4.3 The general case: An arbitrary core

Now we are ready make the proof of the whole result:
Proof of Theorem 1.
Let us consider a balanced game G ∈ GN with core C. We are going to

distinguish two cases:

i. The core is an n− 1-polytope

ii. The core is an m polytope with 1 ≤ m ≤ n− 2

i. The core is an n− 1-polytope

Given the set Ī(G), its faces are determined by the hyperplanes xi = mi.
Given a player i, the hyperplane xi = mi determines the face in which i
obtains the lower value he can get in Ī(G): mi, and opposite to that face we
have the points where i obtains his maximum profit: Mi = v(N)−∑

j 6=i mj.
Let us denote L = Mi−mi = v(N)−∑

j∈N mj, note that L does not depend

6Although it has not been proved, it is evident that those games whose core is a
singleton belong to TG.
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on the player. Given an integer q (for commodity we assume q > 2), we
obtain δ = L/q. For each face in Ī(G) we make q cuts on it, parallel to the
hyperplane in which that face lies. So we partition Ī(G) using the following
hyperplanes:

H i
k ≡ xi = mi + kδ ∀ i ∈ N, k = {0, . . . , q}

These hyperplanes are also going to partition C, and this is the partition we
are interested in; let us see how to define properly these sequence of cuts,
but with regard to the game G:

Stage 0 We begin with the set of games G0 = G

...

Stage i, i ∈ N Now we define the cuts for player i

Step i.0 We cut Ī(G) with xi = mi; Gi,0 = χi
mi

(Gi−1,q)

Step i.1 Gi,1 = χi
mi+δ(Gi,0)

...

Step i.k Gi,k = χi
mi+kδ(Gi−1,k−1)

...

Step i.q Gi,q = χi
mi+qδ(Gi−1,q−1)

Let us denote the set Gn,q by Gδ. Note that many of these cuts are
not going to define proper cuts on many of the cores of the corresponding
games in Gi−1,k−1, i.e. they are going to cut a given core onto an empty set
and the proper core itself. Saving notation let C ′ denote Core(G′), it is also
straightforward to check that

⋃
G′∈Gδ C ′ = C and given two games G1, G2 ∈ Gδ

V ol(Core(G1) ∩ Core(G2)) = 0.
At this point we have divided C in many cores. Now we are going to

prove that given ε > 0 we can find δ small enough such that the volume of
the cores of games in Gδ which are not elemental is at most εV ol(C).

The situation we are going to have is similar to that in Figure 4, most of
the cores of games in Gδ are strictly contained in C, the non elemental restric-
tions are redundant for such these cores (note that they are not necessarily
going to be all of them simplicial cores when n > 3). Given a nonempty core
C̄ of a game in Gδ we know that there exist restrictions

xi ≥ mi + kiδ xi ≤ mi + (ki + 1)δ ≡
∑

j 6=i

xj ≥ mi + (ki + 1)δ ∀i ∈ N
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1

Figure 4: Approximation of a non elemental core via elemental cores

such that they determine a polytope P̄ containing C̄. The maximum eu-
clidean distance between two points in P̄ is

√
nδ. Note that each face of C is

determined by a restriction, likewise, this restriction depends on a coalition
S. So the maximum number of faces of the core of a game with n players is
fn =

∑n−1
i=1

(
n
i

)
. Let F(C) denote the set of all faces of a core C.

If we take a point y inside C such that the distance from this point to
any of the faces of C is more than

√
nδ it is straightforward to check that y

is inside the core of a game in G such that all non elemental restrictions are
redundant, i.e. y is inside an elemental core. Therefore we can find an upper
bound for the volume of the points y ∈ C which are not in an elemental core:

Given a face F of C, consider the subset B(F, δ) = {x ∈ Rn | d(x, F ) <√
nδ}. Clearly limδ→0 B(δ) = F , and the volume of F in HE is 0, because

it is a lies in an n − 2 dimensional space. Now, using that all the B(F, δ)
are bounded sets we can conclude that V ol(B(F, δ)) goes to 0 when δ does.
Therefore, given ε > 0 we can find δ small enough such that V ol(B(F, δ)) <
ε
fn

for all the faces in C. Once one such δ has been chosen y is a point

of C which is not in an elemental core then it must lie in B(F, δ) for some
face F of C. So the total volume of this points is bounded from above by∑

F∈F(C) V ol(B(F, δ) <
∑

F∈F(C)
ε
fn

= fn
ε
fn

= ε. Let us denote by EGδ the

games in Gδ with an elemental core.
Now, using the fair additivity property of the solution ϕ:

ϕ(G) =
1

V ol(C)

∑

G′∈Gδ

V ol(C ′)ϕ(G′) =

=
1

V ol(C)

( ∑

G′∈EGδ

V ol(C ′)ϕ(G′) +
∑

G′∈G\EGδ

V ol(C ′)ϕ(G′)
)

(1)

Due to Corollary 2 we know that ϕ has already been characterized for all the
games in the first addend of Equation 1. It is also known that the second
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addend tends to 0 as long as δ does. And now

ϕ(G) = lim
δ→0

ϕ(G) = lim
δ→0

1

V ol(C)

∑

G′∈Gδ

V ol(C ′)ϕ(G′) =

=
1

V ol(C)

(
lim
δ→0

∑

G′∈EGδ

V ol(C ′)ϕ(G′) + lim
δ→0

∑

G′∈G\EGδ

V ol(C ′)ϕ(G′)
)

=

= lim
δ→0

1

V ol(C)

∑

G′∈EGδ

V ol(C ′)ϕ(G′).

So we have expressed ϕ(G) as the limit of a weighted sum of solutions of
elemental cores, and this implies that G ∈ TG.

ii. The core is an m polytope with 1 ≤ m ≤ n− 2

In this case, as a consequence of Lemma 5, C is the least core LC of the
game G. Now let us consider the sequence of shifted games {G1/n}∞n=1, it is
straightforward to check that limn→∞ G1/n = G. The core of the game G1/n

coincides with the 1
n
-core of the game G. By Lemma 5, all these 1

n
-cores are

going to be (n−1)-polytopes, and now, by the previous part of this proof we
know that these games have already been characterized. Finally using the
continuity property ϕ(G) = limn→∞ϕ(G1/n).

So at this point we have that properties in the statement of this theorem
characterize an allocation rule, besides it is straightforward to check that
the core-center satisfies all these properties. So the result has been proved.
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González-D́ıaz, J., P. Borm, R. Hendrickx, and M. Quant (2003):
“A geometric characterisation of the compromise value,” preprint.

Maschler, M., B. Peleg, and L. S. Shapley (1979): “Geometric prop-
erties of the Kernel, Nucleolus, and related solution concepts,” Mathemat-
ics of Operations Research, 4, 303–338.

Schmeidler, D. (1969): “The nucleolus of a characteristic function game,”
SIAM Journal on Applied Mathematics, 17, 1163–1170.

Shapley, L. (1953): “A value for n-person games,” in Contributions to the
theory of games II, ed. by H. Kuhn and A. Tucker, Princeton: Princeton
University Press, vol. 28 of Annals of Mathematics Studies.

Tijs, S. (1981): “Bounds for the core and the τ -value,” in Game theory and
mathematical economics, ed. by O. Moeschlin and D. Pallaschke, Amster-
dam: North Holland Publishing Company, 123–132.

von Neumann, J. and O. Morgenstern (1944): Theory of games and
economic behavior, Princeton: Princeton University Press.

31


