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FINITELY REPEATED GAMES: A GENERALIZED

NASH FOLK THEOREM
∗

By Julio González-Dı́az

Abstract: This paper characterizes the feasible, individually rational payoffs of finitely re-

peated games that can be approximated arbitrarily closely by Nash equilibria.

1 Introduction

Over the past twenty years, necessary and sufficient conditions have been pub-

lished for numerous “folk theorems”, assuring that the individually rational feasi-

ble payoffs of finitely or infinitely repeated games with complete information can

be achieved by Nash or subgame perfect equilibria1. Results of this kind con-

cerning Nash equilibrium have been obtained by Fudenberg and Maskin (1986)

for infinite games and by Benoit and Krishna (1987) for finite games, and results

concerning subgame perfect equilibrium in infinite games by Abreu (1988), Abreu

et al. (1994) and Wen (1994), who used an “effective minimax” payoff concept.

Smith (1995) obtained a necessary and sufficient condition for the arbitrarily close

approximation of strictly rational feasible payoffs by subgame perfect equilibria in

finite games: that the game have “recursively distinct Nash payoffs”, a premise

∗The Author is indebted to Ignacio Garćıa-Jurado and Ian-Charles Coleman for their help-

ful comments and acknowledges the financial support of the Spanish Ministry for Science and

Technology and FEDER through project BEC2002-04102-C02-02.
1The survey by Benoit and Krishna (1996) includes many of these results.
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that relaxes the assumption in Benoit and Krishna (1985) that each player have

multiple Nash payoffs in the stage game.

Smith claimed that this condition was also necessary for approximation of the

individually rational feasible payoffs of finitely repeated games by Nash equilibria.

In this paper I show that this is not so by establishing a similar but distinct suf-

ficient condition that is weaker than both Smith’s condition and the assumptions

made by Benoit and Krishna (1987), and which really is necessary. Essentially,

the difference between the subgame perfect and Nash cases hinges on the weakness

of the Nash solution concept: in the Nash case it is not necessary for threats of

punitive action against players who deviate from the equilibrium not to involve

substantial loss to the punishing players themselves, i.e. threats need not be cred-

ible. All that is required is for the action sequence ρi played by each player i

in the equilibrium approximating the desired payoff to finish with a series Si of

rounds in which player i cannot unilaterally improve his stage payoff by deviation

from ρi, and for this terminal phase to start with a series S0
i of rounds in which

the other players, regardless of the cost to themselves, can punish him effectively

for any prior deviation by imposing a loss that wipes out any gains he may have

made in deviating.

All the results mentioned above, except for that in Wen (1994), concern the

approximability of the entire set of individually rational feasible payoffs. The

theorem proved in this paper is more general in that, for any game, it character-

izes the set of feasible payoffs that are approximable. Notation and concepts are

introduced in Section 2 below, and in Section 3 the theorem is stated and proved.
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2 Basic Notation, Definitions and an Example

2.1 The Stage Game

A game in strategic form is a triplet G =< N,A,ϕ >, where:

• N = {1, . . . , n} is the set of players,

• A =
∏

i∈N Ai and Ai denotes the set of player i’s strategies,

• ϕ = (ϕ1, . . . , ϕn) and ϕi : A→ R is the utility function of player i.

Let a−i denote a strategy profile for players in N\{i}, and with A−i the set

of such profiles; it is assumed that µ(a−i) = maxai∈Ai
{ϕi(a−i, ai)} exists for each

i ∈ N and a−i ∈ A−i, and that vi = mina−i∈A−i
{µ(a−i)} exists for each i ∈ N . The

vector v = {v1, . . . , vn} is the minimax payoff vector. The set F of all feasible and

individually rational payoffs is the convex hull of the set {ϕ(a) : a ∈ A, ϕ(a) ≥ v}.

To avoid confusion with the strategies of the repeated game, in what follows

the strategies ai ∈ Ai and strategy profiles a ∈ A of the stage game will be called

actions and action profiles, respectively.

2.2 The Repeated Game

Let G(δ, T ) denote the game consisting in the T-fold repetition of G with payoff

discount parameter δ ∈ (0, 1]. In this repeated game each player can decide his

action in the current round in the light of all actions taken by all players in all

previous rounds. Let αi = {α1
i , . . . , α

T
i } denote the action sequence of player i,

and ϕt
i(α) the stage payoff of player i at stage t when all agents play in accordance

with α; then player i’s payoff ψi(α) in G(δ, T ) when α is played is defined to be

his average discounted stage payoff: ψi(α) = ((1 − δ)/(1 − δT ))
∑T

t=1 δ
t−1ϕt

i(α).2

2Or, ψi(α) = (1/T )
∑T

t=1
ϕt

i(α) if there are no discounts (δ = 1).
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2.3 Minimax-Bettering Ladders

For any m-player subset M of N , let AM =
∏

i∈M Ai and let G(aM ) be the

game induced for the n − m players in N\M when the actions of the members

of M constitute the fixed profile aM ∈ AM . By abuse of language, if i ∈ N\M ,

aM ∈ AM and σ ∈ AN\M we write ϕi(σ) for i′s payoff at σ in G(aM ). A minimax-

bettering ladder belonging to a game G is defined to be a triplet {N ,A,Σ} where

N is a strictly increasing sequence {∅ = N0 ( N1 ( · · · ( Nh} of h+1 subsets of N

(h ≥ 1), A is a sequence of action profiles {aN1
∈ AN1

, . . . , aNh−1
∈ ANh−1

} and Σ

is a sequence {σ1, . . . , σh} of Nash equilibria of G = G(aN0
), G(aN1

), . . . , G(aNh−1
),

respectively, such that at σg the players of G(aNg−1
) receiving payoffs strictly

greater than their minimax payoff are exactly the members of Ng\Ng−1: ϕi(σ
g) >

vi ∀i ∈ Ng\Ng−1 ϕi(σ
g) ≤ vi ∀i ∈ N\Ng. In algorithmic terms, if the first

g−1 rungs of the ladder have been constructed, then for the g-th rung to exist the

current game G(aNg−1
) must have an equilibrium σg such that there exist members

i of N\Ng−1 for whom ϕi(σ
g) > vi; Ng\Ng−1 is defined as precisely this subset of

players of G(aNg−1
); and the game played in the next step is defined by some action

profile aNg . The set Nh will be called the top rung of the ladder, a ladder with top

rung Nh is said to be maximal if there is no ladder with top rung Nh′ such that Nh

is a proper subset of Nh′ , and a game G is said to be decomposable as a complete

minimax-bettering ladder if it has a minimax-bettering ladder with N as its top

rung. It is shown below that being decomposable as a complete minimax-bettering

ladder is a necessary and sufficient condition for it to be possible to approximate

all payoff vectors in F by Nash equilibria of G(δ, T ) for some δ and T . Clearly,

being decomposable as complete a minimax-bettering ladder is a weaker property

than the requirement in Smith (1995), that at each step g − 1 of a similar kind

of ladder there be action profiles aNg−1
, bNg−1

such that the games G(aNg−1
) and

G(bNg−1
) have Nash equilibria σg

a and σg
b with ϕi(σ

g
a) 6= ϕi(σ

g
b ) for a non-empty
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set of players (the members of Ng\Ng−1).

2.4 An example

In the equilibrium strategy profile constructed in Theorem 1 below, the action

profile sequence in the terminal phase Si referred to in the Introduction, consists

of repetitions of (aNgi−1
, σgi), (aNgi−2

, σgi−1), . . . , (aN2
, σ2) and σ, where gi is the

unique integer such that i ∈ Ngi
\Ngi−1; and the σj are Nash equilibria of the

corresponding games G(aNj−1
). Since player i is a player in all these games,

he can indeed gain nothing by unilateral deviation during this phase. In the

potentially punishing series of rounds S0
i , the action profile sequence consists of

repetitions of (aNgi−1
, σgi), in which i obtains more than his minimax payoff, with

the accompanying threat of punishing prior unilateral deviation by i (or other

members of Ngi
\Ngi−1) by minimaxing him instead.

l m r l m r

T 0,0,3 0,-1,0 0,-1,0 0,3,-1 0,-1,-1 1,-1,-1

M -1,0,0 0,-1,0 0,-1,0 -1,0,-1 -1,-1,-1 0,-1,-1

B -1,0,0 0,-1,0 0,-1,0 -1,0,-1 -1,-1,-1 0-1,-1

L R

Figure 1: A game that is decomposable as a complete minimax-bettering ladder

As an illustration of the above ideas, consider the three player game G shown

in Figure 1. Its minimax payoff vector is (0, 0, 0), and its only Nash equilibrium

is the action profile σ1 = (T, l, L), with payoff vector (0, 0, 3). Thus N1 = {3};

player 3 can be punished by 1 and 2 by playing to one of his minimax profiles

instead of playing (T, l, ·). If player 3 now plays R (aN1
= R), the resulting game

G(aN1
) = G(R) has an equilibrium σ2 = (T, l) with payoff vector (0, 3). Thus

N2 = {2, 3} and player 2 can be punished by 1 and 3 by playing to one of his
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minimax profiles instead of playing (T, ·, R). Finally if players 2 and 3 now play

r and R (aN2
= (r,R)), the resulting game G(aN2

) = G(r,R) has the trivial

equilibrium σ3 = (T ) with payoff 1 for player 1, who can therefore be punished by

2 and 3 if they play to one of his minimax profiles instead of playing (·, r, R).

2.5 Further Preliminaries

Proposition 1. Given a game G, all maximal ladders have the same top rung.

Proof. Suppose there are maximal ladders L = {N ,A,Σ}, L′ = {N ′,A′,Σ′} with

N = {N0 ( N1 ( · · · ( Nh} and N ′ = {N ′
0 ( N ′

1 ( · · · ( N ′
k} such that,

Nh 6= N ′
k and suppose without loss of generality that N ′

k\Nh is nonempty. For

each j ∈ N ′
k let gj be the unique integer such that j ∈ N ′

gj
\N ′

gj−1, and consider

i ∈ N ′
k\Nh such that gi = minj∈N ′

k
\Nh

gj. Then N ′
gi−1 ⊆ Nh, and we can define

an action profile aNh
by:

(aNh
)j =







(a′
N ′

gi−1

)j j ∈ N ′
gi−1

(σ′gi)j j ∈ Nh\N
′
gi−1

where σ′gi ∈ Σ′ is an equilibrium of the game G(a′
N ′

gi−1

) defined by the action

profile a′
N ′

gi−1

∈ A′.

Now the restriction of σ′gi toN\Nh, which we denote by σh+1, is an equilibrium

of G(aNh
) (since σ′gi is an equilibrium of G(a′

N ′

gi−1

), and N\Nh ⊂ N\N ′
gi−1), and

the subset of members j of N\Nh for whom ϕj(σ
h+1) > vj is precisely the set

N ′
gi
\Nh. Since this set, which we denote by Nh+1, is nonempty (it contains i), the

triplet L′′ = {N ′′,A′′,Σ′′} defined by

• N ′′ = {N0 ( N1 ( · · · ( Nh ( Nh+1},

• A′′ = {aN1
, . . . , aNh−1

, aNh
},

• Σ′′ = {σ1, . . . , σh, σh+1}
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is a ladder, the top rung of which properly contains that of L. Thus L is not

maximal, which proves the Proposition.

Consider a game G with maximal ladders with top rung Nmax. Given â ∈

ANmax , let Λ(â) = {λ = (â, σ) ∈ A | σ Nash Equilibrium of G(â)}, and let Λ =
⋃

â∈ANmax
Λ(â). The set S of all Nmax-feasible payoffs of G is defined to be the

intersection of F with the convex hull of the set {ϕ(λ) | λ ∈ Λ}. If u ∈ S, then by

the definition of Nmax, ui = vi for all i ∈ N\Nmax. Besides, when Nmax = N we

have Λ = A and S = F .

The promised result concerning the approximability of all payoffs in F by Nash

equilibrium payoffs is obtained below as an immediate corollary of a more general

theorem concerning the approximability of all payoffs in S. In this more general

case, the collaboration of the members of Nmax is secured by a strategy analogous

to that sketched in the Example of Section 2.4, while the collaboration of the

members of N\Nmax is also ensured because none of them is able to obtain any

advantage by unilateral deviation from any action profile in Λ.

3 The Theorem

In the theorem that follow, the set of action profiles A may consist either of

pure or mixed action profiles; in the latter case, perfect monitoring is assumed,

i.e. all players are cognizant not only of the pure actions actually put into effect

at each stage, but also of the mixed actions of which they are realizations. Also,

public randomization is assumed: at each stage of the repeated game, players can

let their actions depend on the realization of an exogenous continuous random

variable.3 Public randomization is not crucial, but facilitates the proofs.

3The assumption of public randomization is almost without loss of generality, Fudenberg

and Maskin (1991) having shown that, any correlated mixed action can be approximated by

alternating pure actions with the appropriate frequencies.
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Theorem 1. Given a game G with a maximal minimax-bettering ladder with top

rung Nmax, and given a feasible payoff u ∈ F , then a necessary and sufficient

condition for there to exist for each ε > 0, an integer T0 < ∞ and a positive

real number δ0 < 1 such that for all T ≥ T0 and δ ∈ [δ0, 1], G(δ, T ) has a Nash

equilibrium payoff w such that ‖w − u‖ < ε is that u be Nmax − feasible (i.e.

u ∈ S).

Proof.
suffic
⇐= Let a ∈ Λ be an action profile of G such that ϕ(a) = u, and let

L = {N ,A,Σ} be a maximal minimax-bettering ladder of G. As noted above,

the members of N\Nmax have no incentive for unilateral deviation from a (by

the definition of Λ). In order to calculate how many repetitions of G(aNgi−1
)

will be necessary for the members of N\{i} to be able to punish a player i ∈

Nmax for prior deviation, let us define µ̄(a) = µ(a−i) − ϕi(a) (the maximum

“illicit” profit that player i can obtain by unilateral deviation from a), µ̄i =

max{µ̄(a−i), µ̄((aNh−1
, σh)−i), . . . , µ̄(σ1

−i)} and ri := min{r ∈ N | r(ϕi(σ
gi)− vi) >

µ̄i}. Clearly, there exists δi ∈ (0, 1) such that µ̄i −
∑ri

k=1
δk
i (ϕi(σ

gi)− vi) < 0, so if

the discount parameter δ is at least δi, ri repetitions of G(aNgi−1
) suffice to allow

player i to be punished. Further, if δ ≥ δ0 = maxi∈N δi and, for all g ∈ {1, . . . , h},

qg := maxi∈Ng\Ng−1
ri , then qg repetitions of G(aNgi−1

) suffice to allow any player

in Ng\Ng−1 to be punished. Given ε > 0, we therefore define the action profile

sequence

ρ := {a, . . . , a
︸ ︷︷ ︸

T−T0+q0

, λh, . . . , λh

︸ ︷︷ ︸

qh

, λh−1, . . . , λh−1

︸ ︷︷ ︸

qh−1

, . . . , λ1, . . . , λ1

︸ ︷︷ ︸

q1

}

where λk = (aNk−1
, σk) (with aNk−1

∈ A and σk ∈ Σ), and q0 is the smallest

integer such that:

∥
∥
∥
∥

q0 ϕ(a) + qh ϕ(λh) + · · · + q1 ϕ(λ1)

q0 + qh + · · · + q1
− ϕ(a)

∥
∥
∥
∥
< ε (1)

and T0 = q0 + q1 + · · · + qh; and for T ≥ T0 and δ ∈ [δ0, 1] we prescribe for



Nash folk theorem for Finitely Repeated Games 9

G(δ, T ) the strategy profile in which all players play ρ unless and until there is a

unilateral deviation, in which case the deviating player is minimaxed by all the

others. It is straightforward to check that this profile is a Nash equilibrium of

G(δ, T ), and since its payoff vector w differs from u by less than T0ε/T if δ = 1

(by inequality 1), the same is certainly true if δ < 1, in which case the earlier

stage payoffs (ϕ(a)) receive greater weight than those of the endgame.

necess
=⇒ Consider a payoff u /∈ S. Since S is a closed set, there exists ε such

that ‖w − u‖ < ε⇒ w /∈ S. Therefore if there exists a strategy profile σ such that

‖ϕ(σ) − u‖ < ε, then ϕ(σ) /∈ S and there must be at least one stage of G(δ, T ) in

which σ prescribes an action profile not belonging to Λ (by the definition of S). Let

q be the last such stage, and let ā = (āNmax , āN\Nmax
) denote the corresponding

action profile. By the definition of S, āN\Nmax
cannot be a Nash equilibrium of

G(āNmax). Hence there is at least one member j of N\Nmax who can increase his

gains in round q by deviating unilaterally from ā; and since this behavior cannot

subsequently be punished (by the definition of q, σ assigns j a stage payoff of vj

in all subsequent rounds), σ is not an equilibrium of G(δ, T ).

Corollary 1. If the game G is decomposable as a complete minimax-bettering

ladder, then for all u ∈ F and for all ε > 0, there exist T0 < ∞ and δ0 < 1 such

that for all T ≥ T0 and δ ∈ [δ0, 1] there exists a Nash Equilibrium payoff w of

G(δ, T ), with ‖w − u‖ < ε.

Proof. Since N = Nmax ⇒ F = S, this result is an immediate consequence of

Theorem 1.

Corollary 2. If the game G is not decomposable as a complete minimax-bettering

ladder, then for all T < ∞ and δ ∈ (0, 1] the players i of G(δ, T ) in N\Nmax

receive their minimax stage payoffs vi at all Nash equilibria of G(δ, T ).

Proof. For all u ∈ S, ui = vi for all i ∈ N\Nmax, so this result follows by an
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argument paralleling the proof of necessity in Theorem 1.

Remarks

• Remark 1. Theorem 1 requires no use of the concept of effective minimax

payoff4, because non-equivalent utilities4 are irrelevant to the approximation

of Nmax feasible payoffs by Nash equilibria, in which there is no need for

threats to be credible.

• Remark 2. Theorem 1 assumes neither that the set of action profiles is

finite, nor that it is compact and that the ϕi are continuous. It requires only

that the minimax payoff v exist.5

• Remark 3. Corollary 1 holds for a wider class of games than the result

obtained by Benoit and Krishna (1987).

• Remark 4. Theorem 1 raises the question of whether a similarly general

result on the approximability of payoffs by equilibria also holds for subgame

perfect equilibria. The main problem is to determine the subgame perfect

equilibrium payoffs of players with “recursively distinct Nash payoffs” (Smith

(1995)) when the game is not completely decomposable.

• Remark 5. The results of this paper can be easily extended to the case in

which each player has a different discount δ.

Dept. of Statistics and OR. Faculty of Mathematics, Santiago de Compostela

University. 15782 Santiago de Compostela. Spain. e-mail: julkin@usc.es

4See Abreu et al. (1994) and Wen (1994) for details of these concepts.
5And if it does does not exist, but the infsup payoff vector does, then a similar theorem holds

for the latter. I thank Vijay Krishna for pointing this out to me.



Nash folk theorem for Finitely Repeated Games 11

References

Abreu, D. (1988): “On the Theory of Infinitely Repeated Games with Discount-

ing,” Econometrica, 56, 383–396.

Abreu, D., P. K. Dutta, and L. Smith (1994): “The Folk Theorem for Re-

peated Games: A NEU Condition,” Econometrica, 62, 939–948.

Benoit, J.-P. and V. Krishna (1985): “Finitely Repeated Games,” Economet-

rica, 53, 905–922.

——— (1987): “Nash Equilibria of Finitely Repeated Games,” Int. Journal of

Game Theory, 16, 197–204.

——— (1996): “The Folk Theorems for Repeated Games: A synthesis,” Econ-

WPA, C-72.

Fudenberg, D. and E. Maskin (1986): “The Folk Theorem in Repeated Games

with Discounting or with Incomplete Information,” Econometrica, 54, 533–554.

——— (1991): “On the Dispensability of Public Randomization in Discounted

Repeated Games,” Journal of Economic Theory, 53, 428–438.

Smith, L. (1995): “Necessary and Sufficient Conditions for the Perfect Finite

Horizon Folk Theorem,” Econometrica, 63, 425–430.

Wen, Q. (1994): “The “Folk Theorem” for Repeated Games with Complete

Information,” Econometrica, 62, 949–954.


