1

Analysis of maritime conditions via
nonparametric directional methods

Maria Alonso-Pena

1.1 Introduction ......... ... 3
1.1.1  Wave data in Galicia, Spain ...t 4
1.2 Statistical methodology .........c.ooiiiiiii i 4
1.2.1  Kernel density estimation for cylindrical variables .................... 5
1.2.2  Kernel regression for a circular response .................coiiiiiia. 6
1.2.3  Testing the effect of a covariate .............. ... ... 6
1.2.4  Circular modal regression based on kernel smoothing ................ 7
1.3 Data analysis and discussion ...t 8
1.4 CONCIUSIONS - .\ttt ettt e et e et e e e e e e 13

Understanding maritime conditions, particularly wave direction and height, is vital for in-
formed decision-making in activities such as shipping, navigation, and seafood gathering.
This study applies nonparametric directional methods to analyze these critical variables,
employing methods such as kernel density estimation (KDE) and flexible regression mod-
els to uncover complex relationships. By addressing the circular nature of the data and
the cylindrical relationships between wave direction, wave height, and covariates such as
wind direction and speed, the analysis provides a solid framework for understanding these
interactions.

1.1 Introduction

A key variable in understanding maritime conditions is wave direction, which is inherently
circular in nature (see, e.g., [28, 23, 16, 27]), as is wind direction, another fundamental
factor influencing sea behavior. Due to their circular support (defined on the unit circle
rather than the real line) it is crucial to apply appropriate statistical methods that respect
the geometry of these variables.

Beyond individual variables, it is important to consider interactions between wave direc-
tion and wave height, since the origin and strength of waves are often jointly influenced by
meteorological forces. Likewise, wind direction and wind speed interact in ways that impact
not only sea state but also navigational safety, coastal erosion, and energy extraction. These
pairings, direction with magnitude, constitute examples of cylindrical variables, where one
component is circular and the other is linear (see, e.g., [29, 1]).

Although models for cylindrical data do exist, many impose assumptions that are overly
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restrictive, limiting their capacity to capture complex real-world behaviors. In the context of
real-valued variables, data-driven methods for nonparametric density estimation have been
well developed ([40, 37, 42]), and several works have extended these ideas to circular ([22, 6,
15], toroidal ([10]), and cylindrical domains ([18]). Moreover, [19] proposed a goodness-of-fit
test for parametric families of directional-linear densities.

In addition to examining joint distributions, it is also crucial to model how wave direc-
tion varies in response to wind behavior. Several parametric regression models have been
proposed for circular responses with real-valued covariates ([21, 24, 17, 34]) and with cir-
cular covariates ([13, 26]). However, in practice, the regression functions implied by these
models are often too simplistic to capture the true underlying structure of the data.

To address this, data-driven regression models based on kernel smoothing have been
extensively studied in the real-valued setting ([14, 7]), and adapted to the case of circular
responses by, among others, [11]. Moreover, such estimators can be used to develop signifi-
cance tests and group comparisons ([2]) as well as goodness-of-fit tests ([?]). More advanced
regression models have also been developed to go beyond the conditional mean, such as
quantile regression for circular responses ([12]) and modal regression ([3]), offering a more
nuanced understanding of directional data under covariate effects.

In this work, we study the behavior of wave direction at a key location on the Spanish
coast, focusing on its interaction with both wave height and wind conditions. We adopt a
nonparametric, data-driven approach that allows for flexible modeling of circular and cylin-
drical variables, capturing complex dependencies that parametric models may miss. The
paper begins with a description of the dataset, which includes maritime conditions (wave
direction and height) and meteorological variables (wind direction and speed) recorded at
a strategic point along the Spanish coast. Next, we introduce the methodology used to an-
alyze wave behavior, including kernel-based density estimation techniques for circular and
cylindrical variables, regression models for circular responses, nonparametric significance
tests, and modal regression. This is followed by a detailed analysis of wave dynamics on
the northwestern Spanish coast, with interpretations of the observed patterns. We conclude
with final remarks and suggestions for future research.

1.1.1 Wave data in Galicia, Spain

We analyze maritime and meteorological data collected from a key coastal location
in northwestern Spain. The variables of interest include wave origin direction, wave
height, wind origin direction, and wind speed. These data were obtained from the
Spanish Ministry of Transport and Sustainable Mobility (https://www.puertos.es/es-
es/oceanografia/paginas/portus.aspx) and are part of their ongoing oceanographic moni-
toring efforts.

The measurements were taken at the Villano-Sisargas Buoy, positioned at latitude
43°29.4 N and longitude 9°12.6" W, just off the coast of the Costa da Morte, literally
Coast of Death, in the region of Galicia. This area is well known for its dangerous maritime
conditions, where frequent storms meet a rugged, rocky shoreline. The buoy plays a critical
role in monitoring this high-risk zone, contributing to maritime safety and environmental
awareness. Beyond its environmental significance, this region has strong economic ties to the
sea. Local livelihoods depend heavily on marine activities such as fishing and shellfish har-
vesting, both of which are highly sensitive to changes in oceanographic and meteorological
conditions.

Observations were recorded every 12 hours over a one-year period, yielding a total of
712 measurements. Wave and wind directions are expressed in degrees, with 0°indicating
North and 90°indicating East.
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1.2 Statistical methodology

To analyze the relationships between maritime variables such as wave direction, wave height,
and wind characteristics, we use statistical tools that allow for flexible exploration of the
data without imposing rigid assumptions about its structure. In particular, because some
of these variables, such as wave and wind direction, are directional in nature, we require
methods that can properly account for their circular properties. This section introduces the
nonparametric techniques used in our analysis, with a focus on kernel-based methods that
are well-suited for handling circular and cylindrical data. These tools make it possible to
estimate distributions and model relationships in a data-driven way, capturing key features
without relying on predefined parametric forms. We begin by discussing kernel density
estimation for real-valued, circular and cylindrical variables, followed by regression models
for circular responses, techniques for assessing the influence of covariates, and a kernel-based
approach to circular modal regression.

1.2.1 Kernel density estimation for cylindrical variables

Let X be a real-valued random variable and X1,..., X, a sample of n independent obser-
vations from X, which has density function f. The kernel density estimator of f ([35, 33])
is given by

Flo) == 3" La(Xi —a), (11)

with the kernel function Lj; being a symmetric density, with support on the real line (or
on an interval of the real line) and centered at zero, with h, called bandwidth, controlling
the dispersion of the density. Large values of h lead to an estimator f(x) with large bias
and small variance, while smaller values of h reduce the bias at the cost of increasing
the variance. Therefore, in practice, a data-driven selection of this parameter is of crucial
importance.

Kernel density estimation of a circular density f was introduced in the spherical context
by [22] and [6], and considered specifically for circular data by [15]. Let © be a circular ran-
dom variable, and ©1,...,0,, a sample of n independent observations from ©. We consider
the estimator

n
F0) = =Y K,(©:-0), (1.2)
i=1
where K, is a circular kernel function, i.e., a symmetric circular density function centered
at zero with p controlling the concentration of the density. The parameter p plays a role
opposite to the bandwidth in linear kernel density estimation: it governs the trade-off be-
tween bias and variance. A large value of p results in a more concentrated kernel, producing
a rougher estimate with lower bias but higher variance. Conversely, a lower p leads to a
smoother density estimate with increased bias and reduced variance.

Bivariate kernel density estimation in the case where one of the variables is spherical
was studied by [18], which includes cylindrical variables as a particular case. Let (©,X)
be a cylindrical random variable with density function f. The estimator of f is given by a
product kernel of the form

n

F6.2) = - 5" Ky (0~ 0)Li(X; — ). (13)

=1
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Thus, this estimator depends on two smoothing parameters: p and h, which should also be
chosen in a data-driven way.

1.2.2 Kernel regression for a circular response

Now we consider the problem of estimating the regression function when the response
variable, denoted by ®, has a circular support. Let A be a general covariate, which can
have support on the circumference or on the real line. We consider the model

® = [m(A) + £](mod 27), (1.4)

where ¢ is a circular random error such that E[sine|A = §] = 0. The regression function m
is the mean direction of ® conditioned to the value of A, that is

m(J) = atan2[E(sin ®|A = §), E(cos P|A = §)].

Given a bivariate random sample of (A, @), i.e., {(A;, ®;)}i=1,...n, [11] proposed estimating
m as

my, (0) = atan2{my ., (9), M2, (3)], (1.5)
with

M ( Z R,(A; —0)sin®;,

Mo, ( Z R, (A; — 0) cos Dy,

where the atan2 operator is the two—argument arctangent which returns the angle between
the z-axis and the vector from the origin to (x,y). Additionally, R, is either a circular
kernel function (R, (A; —9) = K,(©; — 0)) if the covariate is circular or a regular kernel
function for a real-valued covariate (R,(A; — ) = Lp(X; — x)).

As in the density estimation problem, the selection of the smoothing parameter v (equiv-
alently p when A = © and h if A = X) is of great importance, as it will control the
bias-variance trade-off.

Next, we consider the problem of a circular response variable ® and two covariates of
different nature, © and X. Therefore, we assume the model

® = [m(X,0) + ¢](mod 27), (1.6)

where the regression m depends on the two covariates and is analogously defined as the
expected direction of ® conditioned to the values of the covariates. [30] extended the previous
kernel estimator to the case of multiple real-valued covariates by using multivariate kernels.
In our case, where there is one circular and one real-valued covariate, we employ a product
kernel as in (1.3). Thus, given a trivariate iid sample {(©;, X;, ®;)}i=1,...» from (0, X, ®),
the kernel estimator takes the form

my(x,0) = atan2[mq , (z,0), Mo (z,0)], (1.7)
with

0) = Z Ln(X; — 2)K,(0; — ) sin ®;,

ma,(x,0) ZLh K,(©;, —0)cos ®;.

The bivariate regression estimator thus depends on two different smoothing parameters, h
and p.
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1.2.3 Testing the effect of a covariate

Before estimating the regression functions, it is useful to test if there is an actual effect
of the covariate on the mean direction of the response when considering model (1.4). A
methodology to test the significance of the covariate in this context was proposed by [2].
The hypotheses of the test are given by

Hy: @ =[y+e¢](mod 2m) (1.8)
Hy: @ =[m(A)+¢](mod 27), (1.9)

with E[sine|A = §] = 0 and where, under the alternative hypothesis, there exists a set of
values of A of non-zero measure for which the regression function, m(A), is not equal to .
Under the null hypothesis, v is the mean direction of ®, and can be estimated as

7 = atan2 <i sin ®@;, i cos <I>i> .
i=1 i=1

Under the alternative, the regression function is estimated as in (1.5). The test statistic is
then given by

D[l = cos(® — )] = 300 [1 — cos(®; — m(A))]
Soiq [l — cos(®; — m(A))]

This statistic measures the relative reduction in average angular distance to the conditional
mean when moving from the null to the alternative model, normalized by the average dis-
tance under the alternative. The distribution of T" under Hy is approximated by a bootstrap
strategy described in [2].

When applying this test, one must account for the fact that nonparametric procedures
are inherently sensitive to the choice of smoothing parameter, a well known issue discussed
by [7]. Since m suffers from some bias, a smoothing level that works well for estimation
might not yield reliable results for hypothesis testing, and [2] recommend using values of
the smoothing parameter which undersmooth the regression function. In addition, it’s good
practice to evaluate the test over multiple smoothing parameters within a sensible range,
rather than relying on a single value.

T =

1.2.4 Circular modal regression based on kernel smoothing

In some settings, the conditional distribution of the response may exhibit more than one
mode for a given covariate value. To account for this, we also consider a multimodal re-
gression approach ([9]), which focuses on estimating the local modes of the conditional
distribution rather than its mean. This method complements the classical kernel regression
described earlier and is particularly useful when the response displays clustered or heteroge-
neous behavior across the range of the covariate.The presence of multiple local modes may
suggest the influence of an unobserved covariate or an interaction effect with the covariate
under study.

Multimodal regression in the context of circular variables was studied by [3]. For a
circular response ® and a general covariate A, the regression multifunction is defined as the
set of modes of the conditional density, that is

M(9) = {gb € [0,2m) : % (9|0) =0, %f(qblé) < 0} . (1.10)

Note that in (1.10) we could replace the conditional density function f(¢|d) by the joint
density function f(d, ¢). Thus, [3] estimates (1.10) in a nonparametric way by first estimating
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the joint density function and then computing its local maxima with respect of the response
variable:

—

~ 2 ~
M(0) = {gb € [0,2m) : %f(gb,é) =0, %f(d), J) < O}. (1.11)

~

The estimator f(¢,d) is given by (1.3) in the case where A is a real-valued variable. If A
has circular support, the estimator is given by a product of circular kernels. To compute the
local maxima, a conditional version of the directional mean shift algorithm (see [45, 44]) is
used.

Again, two smoothing parameters must be selected because the estimation of the joint
density involves two smoothing parameters. However, their role is somewhat different than
in the density estimation scenario: the parameter p associated to the response variable
controls the number of local modes for a given value of §, with higher values leading to
multiple local modes and smaller values leading to a unimodal estimator. On the other
hand, the parameter associated to the covariate A controls the smoothness of the regression
multifunction.

1.3 Data analysis and discussion

This section presents an exploratory and inferential analysis of the available data, with the
goal of understanding the relationship between wave direction and various wind-related vari-
ables. We begin by examining the distributional characteristics of each variable individually
and in pairs, using both univariate and bivariate kernel density estimates. This is followed
by formal testing to assess whether wind speed and direction have a significant effect on
the mean wave direction. Finally, we approach the regression problem from both classical
and multimodal perspectives, first considering each covariate separately and then jointly,
to better capture the structure and possible complexities in the data. For most methods,
the R package NPCirc (see [4]), an updated version of [31], is used.

We first estimate the density function of wave height, wind speed, wave direction and
wind direction individually. For the real-valued variables, we use the kernel estimator in
(1.1), where the kernel Ly, is a Gaussian density. Many different methods have been proposed
in the literature to select the smoothing parameter h in a data-driven way, from a simple
rule of thumb ([40]), to more elaborated plug-in approaches or other methods such as cross
validation ([38]). Here, we employ the two-step plug-in approach of ([39]). Figures 1.1(a)
and 1.1(b) illustrate the resulting kernel density estimates for wave height and wind speed,
respectively. Wave height shows a markedly skewed distribution, with low-height waves
occurring frequently and waves exceeding 6 meters being relatively rare. Wind speed also
exhibits a slight right skewness, with speeds above 18 m/s being uncommon.

Next we estimate the density functions of the two circular functions with the estimator
n (1.2). We employ the von Mises kernel, given by

1
K,(0) = 3To(7) exp{p cos 0},

with Iy being the Bessel function of the first kind and order zero. Although the problem
of the data-driven selection of p has not been as studied as in the real-valued case, there
are several proposals ([41, 32, 20, 5, 47]). We follow the approach of [5], selecting p as a
two-stage plug-in estimate of the optimal concentration minimizing the asymptotic mean
integrated squared error of the density estimator. The resulting estimates of the density
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functions of wave and wind origin directions are displayed in Figures 1.1(c) and 1.1(d),
respectively. We see that most waves originate from the North-West, although there seems
to be a small mode in the North-East direction. Wind directions exhibit a bimodal pattern,
predominantly from the North-East and South-West.

We now examine the joint density of the two cylindrical variables associated with wave
and wind behavior. We employ the product kernel density estimate in (1.3), with L, being
a Gaussian kernel and K, being the von Mises kernel. Although the problem of selecting the
two smoothing parameters in practice has not received much attention, [18] derived explicit
expressions for the theoretical optimal smoothing parameters in terms of minimizing the
asymptotic mean integrated squared errors under a specific parametrization and [46] derived
a explicit formula for the least squares cross-validation loss. In this work, we use a plug-
in approach were we minimize the mean integreated squared error where the unknown
quantities are replaced by parametric estimators based on a mixture of von Mises and
Gaussian densities, extending the ideas of [32] and [20] to the bivariate case.

The too panels of Figure 1.2(a) show the cylindrical kernel density estimate for wave
direction and height. A distinct mode is observed for low wave heights originating from the
North-West. For these lower waves, directions predominantly span the West and North-
West, with additional contributions from the North-East and South-West. In contrast,
higher waves tend to originate mainly from the West and North-West. Figure 1.2(b) shows
the corresponding estimate for wind direction and speed. The primary mode occurs at mod-
erate wind speeds (around 8 m/s) from the South-West, with a secondary local mode for
stronger winds from the North-East. Additionally, wind direction is relatively uniform at
lower speeds, while higher wind speeds are more concentrated around the South-West and
North-East directions. For comparison purposes, the bottom panels of Figure 1.2(a) present
the density estimates based on the parametric model of [24], where the parameters are esti-
mated by maximum likelihood. Compared to the nonparametric cylindrical kernel density
estimates, the parametric model of Johnson and Wehrly proves too restrictive. While it
provides a smooth approximation of the joint distribution, it fails to adequately capture the
multimodal structure observed in the data. In particular, the kernel estimates reveal clear
bimodality in both the wave and wind direction distributions—most notably for low wave
heights and moderate wind speeds—whereas the parametric model tends to smooth over
these features, resulting in unimodal or overly simplistic patterns. This limitation highlights
the challenges of relying solely on parametric assumptions when modeling complex environ-
mental data, where directional and magnitude interactions often exhibit rich, multimodal
behavior.

To assess whether wind speed and wind direction significantly influence the conditional
mean direction of the waves, we applied the significance test based on hypotheses (1.9).
For each covariate, the test was conducted across 15 different values of the smoothing
parameters, including those selected via cross-validation. When considering wind speed as
the covariate, the p-value was consistently below 0.001 for all parameter values, indicating
a statistically significant effect of wind speed on the mean wave direction. Similar results
were obtained for wind direction, supporting the conclusion that it also has a significant
influence on the mean wave direction.

We next employ the nonparametric regression estimator in (1.5) to investigate how the
mean wave direction varies with wind speed. We employ a Gaussian kernel and select v by
cross-validation, as the minimizer of the function

_zn:{l — cos[Y; — ;" (A)]}. (1.12)

The estimated regression function is depicted as a dotted line in Figure 1.3(a). Results
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Scatter plots of wave direction vs. wind speed (a) and wave direction vs. wind direction
(b) with parametric estimators of the conditional mean (dashed trace), kernel regression
estimators of the conditional mean (dotted trace) and of the conditional modes (continuous
trace).

indicate that the mean wave origin is primarily from the North-West, gradually shifting
toward the West as wind speed increases. For comparison purposes, we also compare with
the parametric regression model of [17], which assumes that the conditional distribution is a
von Mises density with mean direction given by 1 + atan(f2x). Such estimator is depicted
as a dashed line, exhibiting an almost constant mean direction centered around the North-
West, regardless of wind speed. This contrast highlights a key limitation of the parametric
model: its reduced flexibility in capturing nonlinear trends in the directional response.

Notably, a subset of data points shows wave directions from the North-East at moder-
ately high wind speeds. To account for this, we apply the multimodal regression estimator
in (1.11), illustrated by the continuous line in Figure 1.3(a). For this, two smoothing pa-
rameters must be selected. One might be tempted to use the same strategy as in multiple
kernel density estimation; however, it is widely known that smoothing parameters that are
optimal for the estimation of the density function are not optimal for the estimation of its
local modes (see [8]). Here, we use the modal cross-validation approach proposed by [3].
This estimator reveals a single local mode at low wind speeds and a second mode emerging
when wind speed exceeds 10 m/s. This pattern may reflect interactions with wind direction
or the influence of additional variables.

We also examine the marginal effect of wind direction on wave direction. We also apply
estimator (1.5), where the kernel is given by a von Mises density and the smoothing param-
eter is again selected by cross-validation. We also compare to the parametric estimator of
[36]. In Figure 1.3(b), both the parametric (dashed line) and nonparametric (dotted line) od
the conditional mean are shown, in addition to the conditional local mode estimator (solid
line). The three estimates largely coincide across most wind directions, indicating good
agreement between methods. However, for wind directions between North and East, a no-
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ticeable discrepancy arises: the modal estimate shifts toward the North-East, the parametric
mean remains closer to the North-West, and the nonparametric mean lies in between. This
behavior suggests a skewed conditional distribution in this range of wind directions. While
the parametric model appears appropriate in general, this localized deviation highlights its
limited ability to accommodate asymmetry, which can be better captured by nonparametric
and modal-based approaches.
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FIGURE 1.4
Representation of the estimated regression function of wave direction with wind direction
and speed as covariates. Arrows represent the estimated direction of of waves.

Finally, we analyze the full regression model (1.6), incorporating both wind speed and
wind direction as covariates. We use the nonparametric estimator defined in (1.7), where
the two smoothing parameters are selected by cross-validation in an analogue way to (1.12).
We visualize the estimated wave direction over a grid of covariate values in Figure 1.4. The
results indicate that for winds originating from the South and West, the estimated wave
direction is primarily from the North-West under weak wind conditions. As wind speed
increases, the wave direction gradually shifts toward the West, and for strong winds from
the South, it further shifts toward the South-West. Conversely, for winds coming from the
North-East, the estimated wave direction transitions from the North-West to the North,
and eventually to the North-East.

These findings suggest that both wind speed and direction jointly influence wave prop-
agation patterns, with stronger winds exerting a more pronounced directional effect. This
highlights the importance of considering multivariate interactions when modeling wave be-
havior.

1.4 Conclusions

In this study, we have examined the behavior of wave direction under the influence of key
maritime and meteorological factors, using flexible nonparametric methods designed for
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circular and cylindrical data. The analysis, based on observations from a coastal monitoring
station in northwestern Spain, reveals rich structure in the relationships between wave
direction and covariates such as wave height, wind direction, and wind speed.

Although wave direction prediction is traditionally approached through deterministic
models based on differential equations, these models often require statistical fine-tuning to
adapt to local or short-term variability. In this context, nonparametric, data-driven meth-
ods offer a valuable complement. By avoiding rigid model assumptions, these approaches
are particularly well suited to capturing the complex, nonlinear, and possibly multimodal
dependencies that characterize real-world oceanographic processes.

Kernel-based estimators enabled us to uncover patterns not easily captured by paramet-
ric models, including shifts in dominant wave direction with varying wind speed or direction.
Modal regression further highlighted situations where the conditional distribution of wave
direction departs significantly from unimodality or symmetry, underscoring the limitations
of mean-based analysis in such contexts.

Our significance testing procedures confirmed the relevance of wind speed and direction
as individual covariates. However, a key limitation remains: tests were performed separately
for each covariate, leaving open the need for multivariate significance testing frameworks
that can jointly assess the influence of several covariates. Likewise, modal regression, while
useful, was restricted to models with a single covariate. Extending this to handle multiple
covariates simultaneously, especially in the cylindrical context, is a promising direction for
future work.

Another important avenue is the incorporation of temporal dependence. The sea state is
inherently dynamic, and successive observations are not independent. In this sense [43] and
[25] proposed parametric methods to account for spatio-temporal processes. Extending these
nonparametric methods to account for temporal correlation could be tackled by employing
another version of cross-validation for selecting the smoothing parameter, such as the leave-
(2141)-out instead of classical leave-one-out selectors. It would also be convenient to account
for temporal dependence in inferential tasks, for example by adapting the bootstrap strategy
in Section 1.2.3. In addition, time-varying density estimation, autoregressive structures, or
functional data approaches could be explored to enhance both the descriptive and predictive
capabilities of the models.

Altogether, our findings illustrate the strengths of flexible, geometry-aware statistical
tools in environmental data analysis. These methods serve not only to refine predictions
from physical models but also to offer new insights into the structure of directional phe-
nomena. Future research should continue to bridge the gap between physical and statistical
modeling, develop more comprehensive inference tools, and explore dynamic extensions
suited to evolving environmental conditions.
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